vit-base-patch16-224-in21k-finetuned-footulcer
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0555
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.97 | 8 | 0.6026 | 0.7069 |
0.6438 | 1.94 | 16 | 0.5132 | 0.7328 |
0.4569 | 2.91 | 24 | 0.4402 | 0.7586 |
0.3098 | 4.0 | 33 | 0.2934 | 0.8448 |
0.2204 | 4.97 | 41 | 0.2969 | 0.8879 |
0.2204 | 5.94 | 49 | 0.1356 | 0.9655 |
0.1668 | 6.91 | 57 | 0.0659 | 0.9914 |
0.1531 | 8.0 | 66 | 0.0555 | 1.0 |
0.1096 | 8.97 | 74 | 0.0913 | 0.9741 |
0.112 | 9.94 | 82 | 0.0454 | 0.9914 |
0.1095 | 10.91 | 90 | 0.0463 | 0.9914 |
0.1095 | 12.0 | 99 | 0.0648 | 0.9914 |
0.0829 | 12.97 | 107 | 0.0427 | 0.9914 |
0.0741 | 13.94 | 115 | 0.0514 | 0.9914 |
0.0679 | 14.55 | 120 | 0.0548 | 0.9914 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 218
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Nitish2801/vit-base-patch16-224-in21k-finetuned-footulcer
Base model
google/vit-base-patch16-224-in21k