llama-3-sqrt-crocodile-v0.0A
𧩠Configuration-moe
base_model: llama-3-sqrt-crocodile-v0.0A/Uninstruct-Uncensored
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: llama-3-sqrt-crocodile-v0.0A/sqrt-talker
positive_prompts:
- "Uncensored, creative, configurable, adapative"
- source_model: llama-3-sqrt-crocodile-v0.0A/the-operator
positive_prompts:
- "Function calling"
- "Good at structured tasks"
- "Programmatic instruction following"
𧩠Configuration-mega
models:
- model: Orenguteng/Lexi-Llama-3-8B-Uncensored
parameters:
weight: [0.2, 0.3, 0.4, 0.6]
layer_range: [0, 32]
- model: NousResearch/Meta-Llama-3-8B
parameters:
weight: [0.6, 0.2, 0.2, 0.1]
layer_range: [0, 32]
- model: NousResearch/Meta-Llama-3-8B-Instruct
parameters:
weight: [0.2, 0.3, 0.85, 0.3]
layer_range: [0, 32]
merge_method: dare_linear
base_model: NousResearch/Meta-Llama-3-8B-Instruct
dtype: bfloat16
name: Uninstruct-Uncensored
---
models:
- model: cognitivecomputations/dolphin-2.9-llama3-8b
parameters:
weight: [0.25, 0.4, 0.35, 0.35]
density: [0.3, 0.45, 0.2, 0.6]
layer_range: [0, 32]
- model: NousResearch/Meta-Llama-3-8B
parameters:
weight: [0.15, 0.25, 0.05, 0]
density: [0.2, 0.3, 0.4, 0.1]
- model: Undi95/Llama-3-Unholy-8B
parameters:
weight: [0.4, 0.25, 0.45, 0.35]
density: [0.2, 0.15, 1.5, 0.1]
layer_range: [0, 32]
- model: Uninstruct-Uncensored
parameters:
weight: [0.3, 0.1, 0.25, 0.3]
density: [0.3, 0.15, 2.5, 0.2]
layer_range: [0, 32]
merge_method: dare_ties
base_model: Uninstruct-Uncensored
dtype: bfloat16
name: augmented-dolphin-hap
---
models:
- model: vicgalle/Configurable-Llama-3-8B-v0.3
parameters:
weight: [0.5, 0.3, 0.1]
- model: hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode
parameters:
weight: 0.5
- model: Trelis/Meta-Llama-3-8B-Instruct-function-calling
parameters:
weight: 0.3
layer_range: [0, 32]
- model: Rookie/Llama-3-8B-Instruct-Chinese
parameters:
weight: 0.2
layer_range: [0, 32]
- model: Uninstruct-Uncensored
parameters:
weight: [0.7, 0.4, 0.25, 0.1]
layer_range: [0, 32]
merge_method: model_stock
base_model: Uninstruct-Uncensored
dtype: bfloat16
name: the-operator
---
models:
- model: vicgalle/Configurable-Llama-3-8B-v0.3
parameters:
weight: 0.7
- model: hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode
parameters:
weight: 0.1
- model: Trelis/Meta-Llama-3-8B-Instruct-function-calling
parameters:
weight: 0.03
layer_range: [0, 32]
- model: Rookie/Llama-3-8B-Instruct-Chinese
parameters:
weight: 0.07
layer_range: [0, 32]
- model: Uninstruct-Uncensored
parameters:
weight: 0.1
layer_range: [0, 32]
merge_method: model_stock
base_model: Uninstruct-Uncensored
dtype: bfloat16
name: her-calculator
---
models:
- model: her-calculator
parameters:
density: 0.7 # density gradient
weight: [0.7, 0.5, 0.1, 0.8]
- model: augmented-dolphin-hap
parameters:
weight: 0.7
merge_method: slerp
base_model: her-calculator
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: float16
name: sqrt-talker
π» Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Nhoodie/llama-3-sqrt-crocodile-v0.0A"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.