See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: EleutherAI/pythia-1b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- dd8e3e233f47c8af_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/dd8e3e233f47c8af_train_data.json
type:
field_instruction: name
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: Nexspear/d435f8ab-1519-4f24-b9cf-e53f303718cf
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/dd8e3e233f47c8af_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 6a9b3cb4-d557-4213-9a78-090727567bd2
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: 6a9b3cb4-d557-4213-9a78-090727567bd2
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
d435f8ab-1519-4f24-b9cf-e53f303718cf
This model is a fine-tuned version of EleutherAI/pythia-1b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.7176
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 400
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0034 | 1 | 3.4026 |
12.0651 | 0.1146 | 34 | 2.9484 |
11.4622 | 0.2291 | 68 | 2.8258 |
11.4711 | 0.3437 | 102 | 2.7850 |
11.1148 | 0.4583 | 136 | 2.7639 |
10.5861 | 0.5729 | 170 | 2.7488 |
10.9982 | 0.6874 | 204 | 2.7375 |
10.926 | 0.8020 | 238 | 2.7293 |
10.7287 | 0.9166 | 272 | 2.7226 |
10.4674 | 1.0312 | 306 | 2.7193 |
10.4739 | 1.1457 | 340 | 2.7182 |
10.7918 | 1.2603 | 374 | 2.7176 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for Nexspear/d435f8ab-1519-4f24-b9cf-e53f303718cf
Base model
EleutherAI/pythia-1b