Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: EleutherAI/pythia-1b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - dd8e3e233f47c8af_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/dd8e3e233f47c8af_train_data.json
  type:
    field_instruction: name
    field_output: text
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: Nexspear/d435f8ab-1519-4f24-b9cf-e53f303718cf
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/dd8e3e233f47c8af_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 6a9b3cb4-d557-4213-9a78-090727567bd2
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: 6a9b3cb4-d557-4213-9a78-090727567bd2
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

d435f8ab-1519-4f24-b9cf-e53f303718cf

This model is a fine-tuned version of EleutherAI/pythia-1b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7176

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 400

Training results

Training Loss Epoch Step Validation Loss
No log 0.0034 1 3.4026
12.0651 0.1146 34 2.9484
11.4622 0.2291 68 2.8258
11.4711 0.3437 102 2.7850
11.1148 0.4583 136 2.7639
10.5861 0.5729 170 2.7488
10.9982 0.6874 204 2.7375
10.926 0.8020 238 2.7293
10.7287 0.9166 272 2.7226
10.4674 1.0312 306 2.7193
10.4739 1.1457 340 2.7182
10.7918 1.2603 374 2.7176

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for Nexspear/d435f8ab-1519-4f24-b9cf-e53f303718cf

Adapter
(272)
this model