See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Hermes-3-Llama-3.1-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 044fd24ccc165951_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/044fd24ccc165951_train_data.json
type:
field_instruction: question
field_output: answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: Nexspear/86b78a72-7e39-408d-a5a1-39422ed40ff5
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/044fd24ccc165951_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: f86da2b3-43cf-4a85-a75e-4ff1c4628088
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: f86da2b3-43cf-4a85-a75e-4ff1c4628088
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
86b78a72-7e39-408d-a5a1-39422ed40ff5
This model is a fine-tuned version of unsloth/Hermes-3-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3427
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0033 | 1 | 2.4745 |
2.2337 | 0.0299 | 9 | 2.3853 |
1.9607 | 0.0599 | 18 | 1.7930 |
1.4597 | 0.0898 | 27 | 1.4339 |
1.2824 | 0.1197 | 36 | 1.3913 |
1.2844 | 0.1496 | 45 | 1.3703 |
1.4073 | 0.1796 | 54 | 1.3600 |
1.374 | 0.2095 | 63 | 1.3521 |
1.2855 | 0.2394 | 72 | 1.3468 |
1.3598 | 0.2693 | 81 | 1.3438 |
1.312 | 0.2993 | 90 | 1.3431 |
1.4346 | 0.3292 | 99 | 1.3427 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for Nexspear/86b78a72-7e39-408d-a5a1-39422ed40ff5
Base model
unsloth/Hermes-3-Llama-3.1-8B