|
|
--- |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sparse-encoder |
|
|
- sparse |
|
|
- splade |
|
|
- generated_from_trainer |
|
|
- loss:SpladeLoss |
|
|
- loss:SparseMultipleNegativesRankingLoss |
|
|
- loss:FlopsLoss |
|
|
base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- pearson_cosine |
|
|
- spearman_cosine |
|
|
- active_dims |
|
|
- sparsity_ratio |
|
|
model-index: |
|
|
- name: SPLADE Sparse Encoder |
|
|
results: |
|
|
- task: |
|
|
type: semantic-similarity |
|
|
name: Semantic Similarity |
|
|
dataset: |
|
|
type: pubmed-similarity |
|
|
name: PubMed Similarity |
|
|
metrics: |
|
|
- type: pearson_cosine |
|
|
value: 0.9422980731390805 |
|
|
name: Pearson Cosine |
|
|
- type: spearman_cosine |
|
|
value: 0.8870061609483617 |
|
|
name: Spearman Cosine |
|
|
- type: active_dims |
|
|
value: 34.0018196105957 |
|
|
name: Active Dims |
|
|
- type: sparsity_ratio |
|
|
value: 0.9988859897906233 |
|
|
name: Sparsity Ratio |
|
|
language: en |
|
|
license: apache-2.0 |
|
|
--- |
|
|
|
|
|
# PubMedBERT SPLADE |
|
|
|
|
|
This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [PubMedBERT-base](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) using [sentence-transformers](https://www.SBERT.net). It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval. |
|
|
|
|
|
The training dataset was generated using a random sample of [PubMed](https://pubmed.ncbi.nlm.nih.gov/) title-abstract pairs along with similar title pairs. |
|
|
|
|
|
PubMedBERT SPLADE produces higher quality sparse embeddings than generalized models for medical literature. Further fine-tuning for a medical subdomain will result in even better performance. |
|
|
|
|
|
## Usage (txtai) |
|
|
|
|
|
This model can be used to build embeddings databases with [txtai](https://github.com/neuml/txtai) for semantic search and/or as a knowledge source for retrieval augmented generation (RAG). |
|
|
|
|
|
_Note: txtai 9.0+ is required for sparse vector scoring support_ |
|
|
|
|
|
```python |
|
|
import txtai |
|
|
|
|
|
embeddings = txtai.Embeddings( |
|
|
sparse="neuml/pubmedbert-base-splade", |
|
|
content=True |
|
|
) |
|
|
embeddings.index(documents()) |
|
|
|
|
|
# Run a query |
|
|
embeddings.search("query to run") |
|
|
``` |
|
|
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
|
|
Alternatively, the model can be loaded with [sentence-transformers](https://www.SBERT.net). |
|
|
|
|
|
```python |
|
|
from sentence_transformers import SparseEncoder |
|
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
|
|
model = SparseEncoder("neuml/pubmedbert-base-splade") |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings) |
|
|
``` |
|
|
|
|
|
## Evaluation Results |
|
|
|
|
|
Performance of this model compared to the top base models on the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard) is shown below. A popular smaller model was also evaluated along with the most downloaded PubMed similarity model on the Hugging Face Hub. |
|
|
|
|
|
The following datasets were used to evaluate model performance. |
|
|
|
|
|
- [PubMed QA](https://huggingface.co/datasets/qiaojin/PubMedQA) |
|
|
- Subset: pqa_labeled, Split: train, Pair: (question, long_answer) |
|
|
- [PubMed Subset](https://huggingface.co/datasets/awinml/pubmed_abstract_3_1k) |
|
|
- Split: test, Pair: (title, text) |
|
|
- [PubMed Summary](https://huggingface.co/datasets/armanc/scientific_papers) |
|
|
- Subset: pubmed, Split: validation, Pair: (article, abstract) |
|
|
|
|
|
Evaluation results are shown below. The [Pearson correlation coefficient](https://en.wikipedia.org/wiki/Pearson_correlation_coefficient) is used as the evaluation metric. |
|
|
|
|
|
| Model | PubMed QA | PubMed Subset | PubMed Summary | Average | |
|
|
| ----------------------------------------------------------------------------- | --------- | ------------- | -------------- | --------- | |
|
|
| [all-MiniLM-L6-v2](https://hf.co/sentence-transformers/all-MiniLM-L6-v2) | 90.40 | 95.92 | 94.07 | 93.46 | |
|
|
| [bge-base-en-v1.5](https://hf.co/BAAI/bge-base-en-v1.5) | 91.02 | 95.82 | 94.49 | 93.78 | |
|
|
| [gte-base](https://hf.co/thenlper/gte-base) | 92.97 | 96.90 | 96.24 | 95.37 | |
|
|
| [pubmedbert-base-embeddings](https://hf.co/neuml/pubmedbert-base-embeddings) | 93.27 | 97.00 | 96.58 | 95.62 | |
|
|
| [**pubmedbert-base-splade**](https://hf.co/neuml/pubmedbert-base-splade) | **90.76** | **96.20** | **95.87** | **94.28** | |
|
|
| [S-PubMedBert-MS-MARCO](https://hf.co/pritamdeka/S-PubMedBert-MS-MARCO) | 90.86 | 93.68 | 93.54 | 92.69 | |
|
|
|
|
|
While this model was't the highest scoring model using the Pearson metric, it does well when measured by [Spearman rank correlation coefficient](https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient). |
|
|
|
|
|
| Model | PubMed QA | PubMed Subset | PubMed Summary | Average | |
|
|
| ----------------------------------------------------------------------------- | --------- | ------------- | -------------- | --------- | |
|
|
| [all-MiniLM-L6-v2](https://hf.co/sentence-transformers/all-MiniLM-L6-v2) | 85.77 | 86.52 | 86.32 | 86.20 | |
|
|
| [bge-base-en-v1.5](https://hf.co/BAAI/bge-base-en-v1.5) | 85.71 | 86.58 | 86.35 | 86.21 | |
|
|
| [gte-base](https://hf.co/thenlper/gte-base) | 86.44 | 86.60 | 86.55 | 86.53 | |
|
|
| [pubmedbert-base-embeddings](https://hf.co/neuml/pubmedbert-base-embeddings) | 86.29 | 86.57 | 86.47 | 86.44 | |
|
|
| [**pubmedbert-base-splade**](https://hf.co/neuml/pubmedbert-base-splade) | **86.80** | **89.12** | **88.60** | **88.17** | |
|
|
| [S-PubMedBert-MS-MARCO](https://hf.co/pritamdeka/S-PubMedBert-MS-MARCO) | 85.71 | 86.37 | 86.13 | 86.07 | |
|
|
|
|
|
This indicates that the SPLADE model may do a better job of calculating scores/rankings in the correct direction. |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SparseEncoder( |
|
|
(0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertForMaskedLM'}) |
|
|
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522}) |
|
|
) |
|
|
``` |
|
|
|
|
|
## More Information |
|
|
|
|
|
The training data for this model is the same as described in [this article](https://medium.com/neuml/embeddings-for-medical-literature-74dae6abf5e0). See [this article](https://huggingface.co/blog/train-sparse-encoder) for more on the training scripts. |
|
|
|