|
--- |
|
license: mit |
|
base_model: FacebookAI/xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xlm-roberta-base-MLTC-rob |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-base-MLTC-rob |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3645 |
|
- F1: 0.8629 |
|
- F1 Weighted: 0.8632 |
|
- Roc Auc: 0.8598 |
|
- Accuracy: 0.6067 |
|
- Hamming Loss: 0.1401 |
|
- Jaccard Score: 0.7588 |
|
- Zero One Loss: 0.3933 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | F1 Weighted | Roc Auc | Accuracy | Hamming Loss | Jaccard Score | Zero One Loss | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:-------:|:--------:|:------------:|:-------------:|:-------------:| |
|
| 0.5856 | 1.0 | 73 | 0.5884 | 0.7201 | 0.6619 | 0.6835 | 0.3393 | 0.3162 | 0.5627 | 0.6607 | |
|
| 0.5053 | 2.0 | 146 | 0.4688 | 0.7718 | 0.7159 | 0.7712 | 0.4139 | 0.2288 | 0.6284 | 0.5861 | |
|
| 0.3929 | 3.0 | 219 | 0.4002 | 0.8410 | 0.8413 | 0.8334 | 0.5347 | 0.1665 | 0.7256 | 0.4653 | |
|
| 0.3293 | 4.0 | 292 | 0.3816 | 0.8471 | 0.8453 | 0.8399 | 0.5527 | 0.1600 | 0.7348 | 0.4473 | |
|
| 0.3242 | 5.0 | 365 | 0.3607 | 0.8550 | 0.8538 | 0.8515 | 0.5784 | 0.1485 | 0.7467 | 0.4216 | |
|
| 0.3228 | 6.0 | 438 | 0.3776 | 0.8495 | 0.8462 | 0.8437 | 0.5707 | 0.1562 | 0.7384 | 0.4293 | |
|
| 0.2713 | 7.0 | 511 | 0.4086 | 0.8453 | 0.8412 | 0.8373 | 0.5630 | 0.1626 | 0.7320 | 0.4370 | |
|
| 0.2519 | 8.0 | 584 | 0.3711 | 0.8534 | 0.8531 | 0.8489 | 0.5861 | 0.1510 | 0.7443 | 0.4139 | |
|
| 0.2724 | 9.0 | 657 | 0.3645 | 0.8629 | 0.8632 | 0.8598 | 0.6067 | 0.1401 | 0.7588 | 0.3933 | |
|
| 0.2484 | 10.0 | 730 | 0.3669 | 0.8586 | 0.8585 | 0.8553 | 0.5964 | 0.1446 | 0.7522 | 0.4036 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|