PULI-Trio-Q / README.md
fragata's picture
Update README.md
854d203 verified
metadata
license: apache-2.0
language:
  - hu
  - en
  - zh
tags:
  - puli

PULI Trio Q 7B base (7.62B billion parameter)

Dataset for continued pretraining

  • Hungarian (8.08 billion words): documents (763K) that exceed 5000 words in length + Hungarian Wikipedia

  • English: Long Context QA (2 billion words), BookSum (78 million words)

  • Chinese (3 billion Chinese characters): Wudao

  • The training was completed using a Hungarian-only dataset:

    • 626 million Hungarian words (1 epoch): Hungarian Wikipedia + News articles

Limitations

  • max_seq_length = 32 768

Usage with pipeline

from transformers import pipeline, Qwen2ForCausalLM, AutoTokenizer

model = Qwen2ForCausalLM.from_pretrained("NYTK/PULI-Trio-Q")
tokenizer = AutoTokenizer.from_pretrained("NYTK/PULI-Trio-Q")
prompt = "Elmesélek egy történetet a nyelvtechnológiáról."
generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, device=0)

print(generator(prompt, max_new_tokens=30)[0]["generated_text"])

Citation

If you use this model, please cite the following paper:

@inproceedings {yang-llumix-llama,
    title = {PULI Chat: Our First Hungarian Conversational Model},
    booktitle = {International Conference on Formal Methods and Foundations of Artificial Intelligence},
    year = {2025},
    publisher = {Eszterházy Károly Catholic University},
    address = {Eger, Hungary},
    author = {Yang, Zijian Győző and Bánfi, Ágnes and Dodé, Réka and Ferenczi, Gergő and Földesi, Flóra and Hatvani, Péter and Héja, Enikő and Lengyel, Mariann and  Madarász, Gábor and Osváth, Mátyás and Sárossy, Bence and Varga, Kristóf and Váradi, Tamás and Prószéky, Gábor and Ligeti-Nagy, Noémi},
    pages = {1--3},
    pubstate={accepted abstract},
    url ={https://uni-eszterhazy.hu/api/media/file/7f9158bd443acc29dbd2a211971fe8677768257c}
}