xLSTM-7B
This xLSTM-7B was pre-trained on the DCLM and selected high-quality data for in a total of approx. 2.3 T tokens using the xlstm-jax
framework.
How to use it
First, install xlstm
, which now uses the mlstm_kernels
package for triton kernels (tested on python 3.11):
pip install xlstm
pip install accelerate
pip install 'transformers @ git+https://github.com/huggingface/transformers.git@main'
If you get an error regarding triton library:
pip install 'triton @ git+https://github.com/triton-lang/triton.git@main'
Use this model as:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
xlstm = AutoModelForCausalLM.from_pretrained("NX-AI/xLSTM-7b", device_map="auto")
# this is a fork of EleutherAI/gpt-neox-20b
tokenizer = AutoTokenizer.from_pretrained("NX-AI/xLSTM-7b")
tokens = tokenizer("Explain quantum computing in simple terms.", return_tensors='pt')['input_ids'].to(device="cuda")
# Get the BOS token ID from the tokenizer
bos_id = tokenizer.bos_token_id
# Prepend BOS
bos_tensor = torch.tensor([[bos_id]], device=tokens.device, dtype=tokens.dtype)
tokens_with_bos = torch.cat([bos_tensor, tokens], dim=1)
out = xlstm.generate(tokens_with_bos, max_new_tokens=20)
print(tokenizer.decode(out[0]))
If you cannot or do not want to use the triton kernels, you can change them to native PyTorch implementations:
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import torch
xlstm_config = AutoConfig.from_pretrained("NX-AI/xLSTM-7b")
xlstm_config.step_kernel = "native"
xlstm_config.chunkwise_kernel = "chunkwise--native_autograd"
xlstm_config.sequence_kernel = "native_sequence__native"
xlstm = AutoModelForCausalLM.from_pretrained("NX-AI/xLSTM-7b",
config=xlstm_config, device_map="auto")
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained("NX-AI/xLSTM-7b")
# Your prompt
prompt = "Explain quantum computing in simple terms."
# Tokenize and send to the same device as the model
inputs = tokenizer(prompt, return_tensors="pt")['input_ids'].to(xlstm.device)
# Get the BOS token ID from the tokenizer
bos_id = tokenizer.bos_token_id
# Prepend BOS
bos_tensor = torch.tensor([[bos_id]], device=xlstm.device, dtype=inputs.dtype)
tokens_with_bos = torch.cat([bos_tensor, inputs], dim=1)
# Generate
outputs = xlstm.generate(
tokens_with_bos,
max_new_tokens=200, # adjust for output length
temperature=0.7, # randomness
top_p=0.9, # nucleus sampling
do_sample=True
)
# Decode and print
print(tokenizer.decode(outputs[0]))
# verify selected kernels
from pprint import pprint
pprint(xlstm.backbone.blocks[0].mlstm_layer.config)
Speed results
Generation Speed using torch.cuda.graph
and torch.compile
optimizations on one NVIDIA H100:
Performance
Using HuggingFace's lm_eval
:
BBH | MMLU-Pro | Math | MUSR | GPQA | IfEval |
---|---|---|---|---|---|
0.381 | 0.242 | 0.036 | 0.379 | 0.280 | 0.244 |
Using HuggingFace's lighteval
in the Leaderboard-v1 settings:
Arc-Challenge (25-shot) | MMLU (5-shot) | Hellaswag (10-shot) | Winogrande (5-shot) | TruthfulQA (0-shot) | GSM8k (5-shot) | OpenbookQA (5-shot) | PiQA (5-shot) |
---|---|---|---|---|---|---|---|
0.584 | 0.589 | 0.710 | 0.742 | 0.420 | 0.004 | 0.443 | 0.817 |
License
NXAI Community License (see LICENSE
file)
- Downloads last month
- 1,697
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support