SentenceTransformer based on NAMAA-Space/AraModernBert-Base-V1.0

This SentenceTransformer is fine-tuned from NAMAA-Space/AraModernBert-Base-V1.0, bringing strong arabic embeddings useful for a multiple of use cases.

🔹 768-dimensional dense vectors 🎯
🔹 Excels in: Semantic Similarity, Search, Paraphrase Mining, Clustering, Text Classification & More!
🔹 Optimized for speed & efficiency without sacrificing performance

Whether you're building intelligent search engines, chatbots, or AI-powered knowledge graphs, this model delivers meaningful representations of Arabic text with precision and depth.

Try it out & bring Arabic NLP to the next level! 🔥✨

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("NAMAA-Space/AraModernBert-Base-STS")
# Run inference
sentences = [
    'الذكاء الاصطناعي يغير طريقة تفاعلنا مع التكنولوجيا.',
    'التكنولوجيا تتطور بسرعة بفضل الذكاء الاصطناعي.',
    'الذكاء الاصطناعي يسهم في تطوير التطبيقات الذكية.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric STS17 STS22.v2
pearson_cosine 0.8249 0.5259
spearman_cosine 0.831 0.6169

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.4.1
  • Transformers: 4.49.0
  • PyTorch: 2.1.0+cu118
  • Accelerate: 1.4.0
  • Datasets: 2.21.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
15
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for NAMAA-Space/AraModernBert-Base-STS

Finetuned
(1)
this model

Collection including NAMAA-Space/AraModernBert-Base-STS

Evaluation results