Eagle2-9B GGUF Models

Model Generation Details

This model was generated using llama.cpp at commit e743cddb.


Quantization Beyond the IMatrix

I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.

In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the --tensor-type option in llama.cpp to manually "bump" important layers to higher precision. You can see the implementation here:
👉 Layer bumping with llama.cpp

While this does increase model file size, it significantly improves precision for a given quantization level.

I'd love your feedback—have you tried this? How does it perform for you?


Click here to get info on choosing the right GGUF model format

Eagle-2

[📂 GitHub] [📜 Eagle2 Tech Report] [🗨️ Chat Demo] [🤗 HF Demo]

Introduction

We are thrilled to release our latest Eagle2 series Vision-Language Model. Open-source Vision-Language Models (VLMs) have made significant strides in narrowing the gap with proprietary models. However, critical details about data strategies and implementation are often missing, limiting reproducibility and innovation. In this project, we focus on VLM post-training from a data-centric perspective, sharing insights into building effective data strategies from scratch. By combining these strategies with robust training recipes and model design, we introduce Eagle2, a family of performant VLMs. Our work aims to empower the open-source community to develop competitive VLMs with transparent processes.

In this repo, we are open-sourcing Eagle2-9B, which strikes the perfect balance between performance and inference speed.

Model Zoo

We provide the following models:

model name LLM Vision Max Length HF Link
Eagle2-1B Qwen2.5-0.5B-Instruct Siglip 16K 🤗 link
Eagle2-2B Qwen2.5-1.5B-Instruct Siglip 16K 🤗 link
Eagle2-9B Qwen2.5-7B-Instruct Siglip+ConvNext 16K 🤗 link

Benchmark Results

Benchmark MiniCPM-Llama3-V-2_5 InternVL-Chat-V1-5 InternVL2-8B QwenVL2-7B Eagle2-9B
Model Size 8.5B 25.5B 8.1B 8.3B 8.9B
DocVQAtest 84.8 90.9 91.6 94.5 92.6
ChartQAtest - 83.8 83.3 83.0 86.4
InfoVQAtest - 72.5 74.8 74.3 77.2
TextVQAval 76.6 80.6 77.4 84.3 83.0
OCRBench 725 724 794 845 868
MMEsum 2024.6 2187.8 2210.3 2326.8 2260
RealWorldQA 63.5 66.0 64.4 70.1 69.3
AI2Dtest 78.4 80.7 83.8 - 83.9
MMMUval 45.8 45.2 / 46.8 49.3 / 51.8 54.1 56.1
MMBench_V11test 79.5 79.4 80.6
MMVetGPT-4-Turbo 52.8 55.4 54.2 62.0 62.2
SEED-Image 72.3 76.0 76.2 77.1
HallBenchavg 42.4 49.3 45.2 50.6 49.3
MathVistatestmini 54.3 53.5 58.3 58.2 63.8
MMstar - - 60.9 60.7 62.6

Quick Start

We provide a demo inference script to help you quickly start using the model. We support different input types:

  • pure text input
  • single image input
  • multiple image input
  • video input

0. Install the dependencies

pip install transformers==4.37.2
pip install flash-attn

Note: Latest version of transformers is not compatible with the model.

1. Prepare the Model worker

Click to expand

"""
A model worker executes the model.
Copied and modified from https://github.com/OpenGVLab/InternVL/blob/main/streamlit_demo/model_worker.py
"""
# Importing torch before transformers can cause `segmentation fault`
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer, AutoConfig

import argparse
import base64
import json
import os
import decord
import threading
import time
from io import BytesIO
from threading import Thread
import math
import requests
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
import numpy as np


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

SIGLIP_MEAN = (0.5, 0.5, 0.5)
SIGLIP_STD = (0.5, 0.5, 0.5)


def get_seq_frames(total_num_frames, desired_num_frames=-1, stride=-1):
    """
    Calculate the indices of frames to extract from a video.

    Parameters:
    total_num_frames (int): Total number of frames in the video.
    desired_num_frames (int): Desired number of frames to extract.

    Returns:
    list: List of indices of frames to extract.
    """
    
    assert desired_num_frames > 0 or stride > 0 and not (desired_num_frames > 0 and stride > 0)

    if stride > 0:
        return list(range(0, total_num_frames, stride))
    
    # Calculate the size of each segment from which a frame will be extracted
    seg_size = float(total_num_frames - 1) / desired_num_frames

    seq = []
    for i in range(desired_num_frames):
        # Calculate the start and end indices of each segment
        start = int(np.round(seg_size * i))
        end = int(np.round(seg_size * (i + 1)))

        # Append the middle index of the segment to the list
        seq.append((start + end) // 2)

    return seq

def build_video_prompt(meta_list, num_frames, time_position=False):
    # if time_position is True, the frame_timestamp is used.
    # 1. pass time_position, 2. use env TIME_POSITION
    time_position = os.environ.get("TIME_POSITION", time_position)
    prefix = f"This is a video:\n"
    for i in range(num_frames):
        if time_position:
            frame_txt = f"Frame {i+1} sampled at {meta_list[i]:.2f} seconds: <image>\n"
        else:
            frame_txt = f"Frame {i+1}: <image>\n"
        prefix += frame_txt
    return prefix

def load_video(video_path, num_frames=64, frame_cache_root=None):
    if isinstance(video_path, str):
        video = decord.VideoReader(video_path)
    elif isinstance(video_path, dict):
        assert False, 'we not support vidoe: "video_path" as input'
    fps = video.get_avg_fps()
    sampled_frames = get_seq_frames(len(video), num_frames)
    samepld_timestamps = [i / fps for i in sampled_frames]
    frames = video.get_batch(sampled_frames).asnumpy()
    images = [Image.fromarray(frame) for frame in frames]
    
    return images, build_video_prompt(samepld_timestamps, len(images), time_position=True)

def load_image(image):
    if isinstance(image, str) and os.path.exists(image):
        return Image.open(image)
    elif isinstance(image, dict):
        if 'disk_path' in image:
            return Image.open(image['disk_path'])
        elif 'base64' in image:
            return Image.open(BytesIO(base64.b64decode(image['base64'])))
        elif 'url' in image:
            response = requests.get(image['url'])
            return Image.open(BytesIO(response.content))
        elif 'bytes' in image:
            return Image.open(BytesIO(image['bytes']))
        else:
            raise ValueError(f'Invalid image: {image}')
    else:
        raise ValueError(f'Invalid image: {image}')

def build_transform(input_size, norm_type='imagenet'):
    if norm_type == 'imagenet':
        MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    elif norm_type == 'siglip':
        MEAN, STD = SIGLIP_MEAN, SIGLIP_STD
        
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    """
    previous version mainly foucs on ratio.
    We also consider area ratio here.
    """
    best_factor = float('-inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        area_ratio = (ratio[0]*ratio[1]*image_size*image_size)/ area
        """
        new area > 60% of original image area is enough.
        """
        factor_based_on_area_n_ratio = min((ratio[0]*ratio[1]*image_size*image_size)/ area, 0.6)* \
                                     min(target_aspect_ratio/aspect_ratio, aspect_ratio/target_aspect_ratio)
        
        if factor_based_on_area_n_ratio > best_factor:
            best_factor = factor_based_on_area_n_ratio
            best_ratio = ratio
        
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def split_model(model_path, device):

    device_map = {}
    world_size = torch.cuda.device_count()
    config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
    num_layers = config.llm_config.num_hidden_layers

    print('world_size', world_size)
    num_layers_per_gpu_ = math.floor(num_layers / (world_size - 1))
    num_layers_per_gpu = [num_layers_per_gpu_] * world_size
    num_layers_per_gpu[device] = num_layers - num_layers_per_gpu_ * (world_size-1)
    print(num_layers_per_gpu)
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = i
            layer_cnt += 1
    device_map['vision_model'] = device
    device_map['mlp1'] = device
    device_map['language_model.model.tok_embeddings'] = device
    device_map['language_model.model.embed_tokens'] = device
    device_map['language_model.output'] = device
    device_map['language_model.model.norm'] = device
    device_map['language_model.lm_head'] = device
    device_map['language_model.model.rotary_emb'] = device
    device_map[f'language_model.model.layers.{num_layers - 1}'] = device
    return device_map

class ModelWorker:
    def __init__(self, model_path, model_name,
                 load_8bit, device):

        if model_path.endswith('/'):
            model_path = model_path[:-1]
        if model_name is None:
            model_paths = model_path.split('/')
            if model_paths[-1].startswith('checkpoint-'):
                self.model_name = model_paths[-2] + '_' + model_paths[-1]
            else:
                self.model_name = model_paths[-1]
        else:
            self.model_name = model_name

        print(f'Loading the model {self.model_name}')

        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
        tokens_to_keep = ['<box>', '</box>', '<ref>', '</ref>']
        tokenizer.additional_special_tokens = [item for item in tokenizer.additional_special_tokens if item not in tokens_to_keep]
        self.tokenizer = tokenizer
        config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
        model_type = config.vision_config.model_type
        self.device = torch.cuda.current_device()
        if model_type == 'siglip_vision_model':
            self.norm_type = 'siglip'
        elif model_type == 'MOB':
            self.norm_type = 'siglip'
        else:
            self.norm_type = 'imagenet'

        if any(x in model_path.lower() for x in ['34b']):
            device_map = split_model(model_path, self.device)
        else:
            device_map = None
        
        if device_map is not None:    
            self.model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16,
                                               low_cpu_mem_usage=True,
                                               device_map=device_map, 
                                               trust_remote_code=True,
                                               load_in_8bit=load_8bit).eval()
        else:
            self.model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16,
                                               trust_remote_code=True,
                                               load_in_8bit=load_8bit).eval()  

        if not load_8bit and device_map is None:
            self.model = self.model.to(device)
        self.load_8bit = load_8bit
        
        self.model_path = model_path
        self.image_size = self.model.config.force_image_size
        self.context_len = tokenizer.model_max_length
        self.per_tile_len = 256

    def reload_model(self):
        del self.model
        torch.cuda.empty_cache()
        if self.device == 'auto':
            os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
            # This can make distributed deployment work properly
            self.model = AutoModel.from_pretrained(
                self.model_path,
                load_in_8bit=self.load_8bit,
                torch_dtype=torch.bfloat16,
                device_map=self.device_map,
                trust_remote_code=True).eval()
        else:
            self.model = AutoModel.from_pretrained(
                self.model_path,
                load_in_8bit=self.load_8bit,
                torch_dtype=torch.bfloat16,
                trust_remote_code=True).eval()
        if not self.load_8bit and not self.device == 'auto':
            self.model = self.model.cuda()

    @torch.inference_mode()
    def generate(self, params):
        system_message = params['prompt'][0]['content']
        send_messages = params['prompt'][1:]
        max_input_tiles = params['max_input_tiles']
        temperature = params['temperature']
        top_p = params['top_p']
        max_new_tokens = params['max_new_tokens']
        repetition_penalty = params['repetition_penalty']
        video_frame_num = params.get('video_frame_num', 64)
        do_sample = True if temperature > 0.0 else False

        global_image_cnt = 0
        history, pil_images, max_input_tile_list = [], [], []
        for message in send_messages:
            if message['role'] == 'user':
                prefix = ''
                if 'image' in message:
                    for image_data in message['image']:
                        pil_images.append(load_image(image_data))
                        prefix = prefix + f'<image {global_image_cnt + 1}><image>\n'
                        global_image_cnt += 1
                        max_input_tile_list.append(max_input_tiles)
                if 'video' in message:
                    for video_data in message['video']:
                        video_frames, tmp_prefix = load_video(video_data, num_frames=video_frame_num)
                        pil_images.extend(video_frames)
                        prefix = prefix + tmp_prefix
                        global_image_cnt += len(video_frames)
                        max_input_tile_list.extend([1] * len(video_frames))
                content = prefix + message['content']
                history.append([content, ])
            else:
                history[-1].append(message['content'])
        question, history = history[-1][0], history[:-1]

        if global_image_cnt == 1:
            question = question.replace('<image 1><image>\n', '<image>\n')
            history = [[item[0].replace('<image 1><image>\n', '<image>\n'), item[1]] for item in history]


        try:
            assert len(max_input_tile_list) == len(pil_images), 'The number of max_input_tile_list and pil_images should be the same.'
        except Exception as e:
            from IPython import embed; embed()
            exit()
            print(f'Error: {e}')
            print(f'max_input_tile_list: {max_input_tile_list}, pil_images: {pil_images}')
            # raise e

        old_system_message = self.model.system_message
        self.model.system_message = system_message
        
        transform = build_transform(input_size=self.image_size, norm_type=self.norm_type)
        if len(pil_images) > 0:
            max_input_tiles_limited_by_contect = params['max_input_tiles']
            while True:
                image_tiles = []
                for current_max_input_tiles, pil_image in zip(max_input_tile_list, pil_images):
                    if self.model.config.dynamic_image_size:
                        tiles = dynamic_preprocess(
                            pil_image, image_size=self.image_size, max_num=min(current_max_input_tiles, max_input_tiles_limited_by_contect),
                            use_thumbnail=self.model.config.use_thumbnail)
                    else:
                        tiles = [pil_image]
                    image_tiles += tiles
                if (len(image_tiles) * self.per_tile_len < self.context_len):
                    break
                else:
                    max_input_tiles_limited_by_contect -= 2
                
                if max_input_tiles_limited_by_contect < 1:
                    break
                    
            pixel_values = [transform(item) for item in image_tiles]
            pixel_values = torch.stack(pixel_values).to(self.model.device, dtype=torch.bfloat16)
            print(f'Split images to {pixel_values.shape}')
        else:
            pixel_values = None

        generation_config = dict(
            num_beams=1,
            max_new_tokens=max_new_tokens,
            do_sample=do_sample,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            max_length=self.context_len,
            top_p=top_p,
        )

        response = self.model.chat(
            tokenizer=self.tokenizer,
            pixel_values=pixel_values,
            question=question,
            history=history,
            return_history=False,
            generation_config=generation_config,
        )
        self.model.system_message = old_system_message
        return {'text': response, 'error_code': 0}





if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--model-path', type=str, default='nvidia/Eagle2-9B')
    parser.add_argument('--model-name', type=str, default='Eagle2-9B')
    parser.add_argument('--device', type=str, default='cuda')
    parser.add_argument('--load-8bit', action='store_true')
    args = parser.parse_args()
    print(f'args: {args}')

    worker = ModelWorker(
                         args.model_path,
                         args.model_name,
                         args.load_8bit,
                         args.device)

2. Prepare the Prompt

  • Single image input
prompt = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {'role': 'user', 'content': 'Describe this image in details.', 
            'image':[
                {'url': 'https://www.nvidia.com/content/dam/en-zz/Solutions/about-nvidia/logo-and-brand/[email protected]'}
            ],
        }
    ]
  • Multiple image input
prompt = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {'role': 'user', 'content': 'Describe these two images in details.', 
            'image':[
                {'url': 'https://www.nvidia.com/content/dam/en-zz/Solutions/about-nvidia/logo-and-brand/[email protected]'},
                {'url': 'https://www.nvidia.com/content/dam/en-zz/Solutions/about-nvidia/logo-and-brand/[email protected]'}
            ],
        }
    ]
  • Video input
prompt = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {'role': 'user', 'content': 'Describe this video in details.', 
            'video':[
                'path/to/your/video.mp4'
            ],
        }
    ]

3. Generate the response

params = {
    'prompt': prompt,
    'max_input_tiles': 24,
    'temperature': 0.7,
    'top_p': 1.0,
    'max_new_tokens': 4096,
    'repetition_penalty': 1.0,
    }
worker.generate(params)

TODO

  • Support vLLM Inference
  • Provide AWQ Quantization Weights
  • Provide fine-tuning scripts

License/Terms of Use

Citation

Ethical Considerations

NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.

Please report security vulnerabilities or NVIDIA AI Concerns here.


🚀 If you find these models useful

Help me test my AI-Powered Quantum Network Monitor Assistant with quantum-ready security checks:

👉 Quantum Network Monitor

The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : Source Code Quantum Network Monitor. You will also find the code I use to quantize the models if you want to do it yourself GGUFModelBuilder

💬 How to test:
Choose an AI assistant type:

  • TurboLLM (GPT-4.1-mini)
  • HugLLM (Hugginface Open-source models)
  • TestLLM (Experimental CPU-only)

What I’m Testing

I’m pushing the limits of small open-source models for AI network monitoring, specifically:

  • Function calling against live network services
  • How small can a model go while still handling:
    • Automated Nmap security scans
    • Quantum-readiness checks
    • Network Monitoring tasks

🟡 TestLLM – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):

  • Zero-configuration setup
  • ⏳ 30s load time (slow inference but no API costs) . No token limited as the cost is low.
  • 🔧 Help wanted! If you’re into edge-device AI, let’s collaborate!

Other Assistants

🟢 TurboLLM – Uses gpt-4.1-mini :

  • **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
  • Create custom cmd processors to run .net code on Quantum Network Monitor Agents
  • Real-time network diagnostics and monitoring
  • Security Audits
  • Penetration testing (Nmap/Metasploit)

🔵 HugLLM – Latest Open-source models:

  • 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.

💡 Example commands you could test:

  1. "Give me info on my websites SSL certificate"
  2. "Check if my server is using quantum safe encyption for communication"
  3. "Run a comprehensive security audit on my server"
  4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code on. This is a very flexible and powerful feature. Use with caution!

Final Word

I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is open source. Feel free to use whatever you find helpful.

If you appreciate the work, please consider buying me a coffee ☕. Your support helps cover service costs and allows me to raise token limits for everyone.

I'm also open to job opportunities or sponsorship.

Thank you! 😊

Downloads last month
420
GGUF
Model size
7.61B params
Architecture
qwen2
Hardware compatibility
Log In to view the estimation

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Mungert/Eagle2-9B-GGUF