DeepHermes-3-Llama-3-8B-Preview GGUF Models
Choosing the Right Model Format
Selecting the correct model format depends on your hardware capabilities and memory constraints.
BF16 (Brain Float 16) β Use if BF16 acceleration is available
- A 16-bit floating-point format designed for faster computation while retaining good precision.
- Provides similar dynamic range as FP32 but with lower memory usage.
- Recommended if your hardware supports BF16 acceleration (check your deviceβs specs).
- Ideal for high-performance inference with reduced memory footprint compared to FP32.
π Use BF16 if:
β Your hardware has native BF16 support (e.g., newer GPUs, TPUs).
β You want higher precision while saving memory.
β You plan to requantize the model into another format.
π Avoid BF16 if:
β Your hardware does not support BF16 (it may fall back to FP32 and run slower).
β You need compatibility with older devices that lack BF16 optimization.
F16 (Float 16) β More widely supported than BF16
- A 16-bit floating-point high precision but with less of range of values than BF16.
- Works on most devices with FP16 acceleration support (including many GPUs and some CPUs).
- Slightly lower numerical precision than BF16 but generally sufficient for inference.
π Use F16 if:
β Your hardware supports FP16 but not BF16.
β You need a balance between speed, memory usage, and accuracy.
β You are running on a GPU or another device optimized for FP16 computations.
π Avoid F16 if:
β Your device lacks native FP16 support (it may run slower than expected).
β You have memory limitations.
Quantized Models (Q4_K, Q6_K, Q8, etc.) β For CPU & Low-VRAM Inference
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
- Lower-bit models (Q4_K) β Best for minimal memory usage, may have lower precision.
- Higher-bit models (Q6_K, Q8_0) β Better accuracy, requires more memory.
π Use Quantized Models if:
β You are running inference on a CPU and need an optimized model.
β Your device has low VRAM and cannot load full-precision models.
β You want to reduce memory footprint while keeping reasonable accuracy.
π Avoid Quantized Models if:
β You need maximum accuracy (full-precision models are better for this).
β Your hardware has enough VRAM for higher-precision formats (BF16/F16).
Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)
These models are optimized for extreme memory efficiency, making them ideal for low-power devices or large-scale deployments where memory is a critical constraint.
IQ3_XS: Ultra-low-bit quantization (3-bit) with extreme memory efficiency.
- Use case: Best for ultra-low-memory devices where even Q4_K is too large.
- Trade-off: Lower accuracy compared to higher-bit quantizations.
IQ3_S: Small block size for maximum memory efficiency.
- Use case: Best for low-memory devices where IQ3_XS is too aggressive.
IQ3_M: Medium block size for better accuracy than IQ3_S.
- Use case: Suitable for low-memory devices where IQ3_S is too limiting.
Q4_K: 4-bit quantization with block-wise optimization for better accuracy.
- Use case: Best for low-memory devices where Q6_K is too large.
Q4_0: Pure 4-bit quantization, optimized for ARM devices.
- Use case: Best for ARM-based devices or low-memory environments.
Summary Table: Model Format Selection
Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
---|---|---|---|---|
BF16 | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
F16 | High | High | FP16-supported devices | GPU inference when BF16 isnβt available |
Q4_K | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
Q6_K | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
Q8_0 | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
IQ3_XS | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
Q4_0 | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
Included Files & Details
DeepHermes-3-Llama-3-8B-Preview-bf16.gguf
- Model weights preserved in BF16.
- Use this if you want to requantize the model into a different format.
- Best if your device supports BF16 acceleration.
DeepHermes-3-Llama-3-8B-Preview-f16.gguf
- Model weights stored in F16.
- Use if your device supports FP16, especially if BF16 is not available.
DeepHermes-3-Llama-3-8B-Preview-bf16-q8_0.gguf
- Output & embeddings remain in BF16.
- All other layers quantized to Q8_0.
- Use if your device supports BF16 and you want a quantized version.
DeepHermes-3-Llama-3-8B-Preview-f16-q8_0.gguf
- Output & embeddings remain in F16.
- All other layers quantized to Q8_0.
DeepHermes-3-Llama-3-8B-Preview-q4_k.gguf
- Output & embeddings quantized to Q8_0.
- All other layers quantized to Q4_K.
- Good for CPU inference with limited memory.
DeepHermes-3-Llama-3-8B-Preview-q4_k_s.gguf
- Smallest Q4_K variant, using less memory at the cost of accuracy.
- Best for very low-memory setups.
DeepHermes-3-Llama-3-8B-Preview-q6_k.gguf
- Output & embeddings quantized to Q8_0.
- All other layers quantized to Q6_K .
DeepHermes-3-Llama-3-8B-Preview-q8_0.gguf
- Fully Q8 quantized model for better accuracy.
- Requires more memory but offers higher precision.
DeepHermes-3-Llama-3-8B-Preview-iq3_xs.gguf
- IQ3_XS quantization, optimized for extreme memory efficiency.
- Best for ultra-low-memory devices.
DeepHermes-3-Llama-3-8B-Preview-iq3_m.gguf
- IQ3_M quantization, offering a medium block size for better accuracy.
- Suitable for low-memory devices.
DeepHermes-3-Llama-3-8B-Preview-q4_0.gguf
- Pure Q4_0 quantization, optimized for ARM devices.
- Best for low-memory environments.
- Prefer IQ4_NL for better accuracy.
π If you find these models useful
Please click like β€ . Also Iβd really appreciate it if you could test my Network Monitor Assistant at π Network Monitor Assitant.
π¬ Click the chat icon (bottom right of the main and dashboard pages) . Choose a LLM; toggle between the LLM Types TurboLLM -> FreeLLM -> TestLLM.
What I'm Testing
I'm experimenting with function calling against my network monitoring service. Using small open source models. I am into the question "How small can it go and still function".
π‘ TestLLM β Runs the current testing model using llama.cpp on 6 threads of a Cpu VM (Should take about 15s to load. Inference speed is quite slow and it only processes one user prompt at a timeβstill working on scaling!). If you're curious, I'd be happy to share how it works! .
The other Available AI Assistants
π’ TurboLLM β Uses gpt-4o-mini Fast! . Note: tokens are limited since OpenAI models are pricey, but you can Login or Download the Free Network Monitor agent to get more tokens, Alternatively use the FreeLLM .
π΅ FreeLLM β Runs open-source Hugging Face models Medium speed (unlimited, subject to Hugging Face API availability).
DeepHermes 3 - Llama-3.1 8B
Model Description
DeepHermes 3 Preview is the latest version of our flagship Hermes series of LLMs by Nous Research, and one of the first models in the world to unify Reasoning (long chains of thought that improve answer accuracy) and normal LLM response modes into one model. We have also improved LLM annotation, judgement, and function calling.
DeepHermes 3 Preview is one of the first LLM models to unify both "intuitive", traditional mode responses and long chain of thought reasoning responses into a single model, toggled by a system prompt.
Hermes 3, the predecessor of DeepHermes 3, is a generalist language model with many improvements over Hermes 2, including advanced agentic capabilities, much better roleplaying, reasoning, multi-turn conversation, long context coherence, and improvements across the board.
The ethos of the Hermes series of models is focused on aligning LLMs to the user, with powerful steering capabilities and control given to the end user.
This is a preview Hermes with early reasoning capabilities, distilled from R1 across a variety of tasks that benefit from reasoning and objectivity. Some quirks may be discovered! Please let us know any interesting findings or issues you discover!
Note: To toggle REASONING ON, you must use the following system prompt:
You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside <think> </think> tags, and then provide your solution or response to the problem.
Nous API
This model is also available on our new API product - Check out the API and sign up for the waitlist here: https://portal.nousresearch.com/
Example Outputs:
Benchmarks
Benchmarks for Reasoning Mode on vs off:
Reasoning ON benchmarks aquired by running HuggingFace's open-r1 reasoning mode evaluation suite, and scores for reasoning mode OFF aquired by running LM-Eval-Harness Benchmark Suite Upper bound determined by measuring the % gained over Hermes 3 3 & 70b by MATH_VERIFY compared to eleuther eval harness, which ranged betweeen 33% and 50% gain in MATH Hard benchmark on retested models by them compared to eval harness reported scores
Benchmarks in Non-Reasoning Mode against Llama-3.1-8B-Instruct
Prompt Format
DeepHermes 3 now uses Llama-Chat format as the prompt format, opening up a more unified, structured system for engaging the LLM in multi-turn chat dialogue.
System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.
Deep Thinking Mode - Deep Hermes Preview can activate long chain of thought with a system prompt.
You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside <think> </think> tags, and then provide your solution or response to the problem.
For an example of using deep reasoning mode with HuggingFace Transformers:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import flash_attn
import time
tokenizer = AutoTokenizer.from_pretrained("NousResearch/DeepHermes-3-Llama-3-8B-Preview")
model = AutoModelForCausalLM.from_pretrained(
"NousResearch/DeepHermes-3-Llama-3-8B-Preview",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="flash_attention_2",
)
messages = [
{
"role": "system",
"content": "You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside <think> </think> tags, and then provide your solution or response to the problem."
},
{
"role": "user",
"content": "What is y if y=2*2-4+(3*2)"
}
]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors='pt').to("cuda")
generated_ids = model.generate(input_ids, max_new_tokens=2500, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
print(f"Generated Tokens: {generated_ids.shape[-1:]}")
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True, clean_up_tokenization_space=True)
print(f"Response: {response}")
Please note, for difficult problems DeepHermes can think using as many as 13,000 tokens. You may need to increase max_new_tokens
to be much larger than 2500 for difficult problems.
Standard "Intuitive" Response Mode
Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import flash_attn
import time
tokenizer = AutoTokenizer.from_pretrained("NousResearch/DeepHermes-3-Llama-3-8B-Preview")
model = AutoModelForCausalLM.from_pretrained(
"NousResearch/DeepHermes-3-Llama-3-8B-Preview",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="flash_attention_2",
)
messages = [
{
"role": "system",
"content": "You are Hermes, an AI assistant"
},
{
"role": "user",
"content": "What are the most interesting things to do in Paris?"
}
]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors='pt').to("cuda")
generated_ids = model.generate(input_ids, max_new_tokens=2500, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
print(f"Generated Tokens: {generated_ids.shape[-1:]}")
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True, clean_up_tokenization_space=True)
print(f"Response: {response}")
VLLM Inference
You can also run this model with vLLM, by running the following in your terminal after pip install vllm
vllm serve NousResearch/DeepHermes-3-Llama-3-8B-Preview
You may then use the model over API using the OpenAI library just like you would call OpenAI's API.
Prompt Format for Function Calling
Our model was trained on specific system prompts and structures for Function Calling.
You should use the system role with this message, followed by a function signature json as this example shows here.
<|start_header_id|>system<|end_header_id|>
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{"arguments": <args-dict>, "name": <function-name>}
</tool_call><|eot_id|><|start_header_id|>user<|end_header_id|>
To complete the function call, create a user prompt that follows the above system prompt, like so:
Fetch the stock fundamentals data for Tesla (TSLA)<|eot_id|><|start_header_id|>assistant<|end_header_id|>
The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling):
<tool_call>
{"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"}
</tool_call><|eot_id|><|start_header_id|>tool<|end_header_id|>
Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, tool
like so:
<tool_response>
{"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}}
</tool_response>
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
The assistant will then read in that data from the function's response, and generate a natural language response:
The stock fundamentals data for Tesla (TSLA) are as follows:
- **Symbol**: TSLA
- **Company Name**: Tesla, Inc.
- **Sector**: Consumer Cyclical
- **Industry**: Auto Manufacturers
- **Market Capitalization**: $566,160,130,480
- **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73
- **Price-to-Book Ratio (PB Ratio)**: 9.04
- **Dividend Yield**: N/A
- **Trailing Earnings Per Share (EPS)**: $4.3
- **Beta Value of the Stock**: 2.42
- **52-Week High Price of the Stock**: $299.29
- **52-Week Low Price of the Stock**: $152.37
This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|eot_id|><|start_header_id|>user<|end_header_id|>
Prompt Format for JSON Mode / Structured Outputs
Our model was also trained on a specific system prompt for Structured Outputs, which should respond with only a json object response, in a specific json schema.
Your schema can be made from a pydantic object using our codebase, with the standalone script jsonmode.py
available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main
<|start_header_id|>system<|end_header_id|>
You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|eot_id|>
Given the {schema} that you provide, it should follow the format of that json to create its response, all you have to do is give a typical user prompt, and it will respond in JSON.
Inference Code for Function Calling:
All code for utilizing, parsing, and building function calling templates is available on our github: https://github.com/NousResearch/Hermes-Function-Calling
Quantized Versions:
GGUF Quants: https://huggingface.co/NousResearch/DeepHermes-3-Llama-3-8B-Preview-GGUF
How to cite:
@misc{
title={DeepHermes 3 Preview},
author={Teknium and Roger Jin and Chen Guang and Jai Suphavadeeprasit and Jeffrey Quesnelle},
year={2025}
}
- Downloads last month
- 1,108
Model tree for Mungert/DeepHermes-3-Llama-3-8B-Preview-GGUF
Base model
meta-llama/Llama-3.1-8B