SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v11")
# Run inference
sentences = [
"View GCP View Azure View Oracle View US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \\+ More View Privacy View Security View Governance View Marketing View Resources Blog View Collateral View Knowledge Center View Securiti Education View Company About Us View Partner Program View Contact Us View News Coverage View Press Releases View Careers View Events Spotlight Talks IDC Names Securiti a Worldwide Leader in Data Privacy View Events Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data Command Center View Learn more Asset and Data Discovery Discover dark and native data assets Learn more Data Access Intelligence & Governance Identify which users have access to sensitive data and prevent unauthorized access Learn more Data Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage , GCP View Azure View Oracle View US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \\+ More View Privacy View Security View Governance View Marketing View Resources Blog View Collateral View Knowledge Center View Securiti Education View Company About Us View Partner Program View Contact Us View News Coverage View Press Releases View Careers View Events Spotlight Talks IDC Names Securiti a Worldwide Leader in Data Privacy View Events Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data Command Center View Learn more Asset and Data Discovery Discover dark and native data assets Learn more Data Access Intelligence & Governance Identify which users have access to sensitive data and prevent unauthorized access Learn more Data Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes",
'What products and solutions does Oracle offer for data privacy and security, and how do they comply with regulations in different regions and countries?',
'What are the key provisions and changes in the Personal Data Protection Bill 2021 in India, and how can Securiti assist with compliance?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1 |
cosine_accuracy@3 | 0.36 |
cosine_accuracy@5 | 0.52 |
cosine_accuracy@10 | 0.75 |
cosine_precision@1 | 0.1 |
cosine_precision@3 | 0.12 |
cosine_precision@5 | 0.104 |
cosine_precision@10 | 0.075 |
cosine_recall@1 | 0.1 |
cosine_recall@3 | 0.36 |
cosine_recall@5 | 0.52 |
cosine_recall@10 | 0.75 |
cosine_ndcg@10 | 0.3853 |
cosine_mrr@10 | 0.2732 |
cosine_map@100 | 0.2814 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.09 |
cosine_accuracy@3 | 0.37 |
cosine_accuracy@5 | 0.51 |
cosine_accuracy@10 | 0.74 |
cosine_precision@1 | 0.09 |
cosine_precision@3 | 0.1233 |
cosine_precision@5 | 0.102 |
cosine_precision@10 | 0.074 |
cosine_recall@1 | 0.09 |
cosine_recall@3 | 0.37 |
cosine_recall@5 | 0.51 |
cosine_recall@10 | 0.74 |
cosine_ndcg@10 | 0.3758 |
cosine_mrr@10 | 0.2635 |
cosine_map@100 | 0.2725 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1 |
cosine_accuracy@3 | 0.35 |
cosine_accuracy@5 | 0.47 |
cosine_accuracy@10 | 0.72 |
cosine_precision@1 | 0.1 |
cosine_precision@3 | 0.1167 |
cosine_precision@5 | 0.094 |
cosine_precision@10 | 0.072 |
cosine_recall@1 | 0.1 |
cosine_recall@3 | 0.35 |
cosine_recall@5 | 0.47 |
cosine_recall@10 | 0.72 |
cosine_ndcg@10 | 0.37 |
cosine_mrr@10 | 0.2625 |
cosine_map@100 | 0.2733 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.07 |
cosine_accuracy@3 | 0.33 |
cosine_accuracy@5 | 0.48 |
cosine_accuracy@10 | 0.71 |
cosine_precision@1 | 0.07 |
cosine_precision@3 | 0.11 |
cosine_precision@5 | 0.096 |
cosine_precision@10 | 0.071 |
cosine_recall@1 | 0.07 |
cosine_recall@3 | 0.33 |
cosine_recall@5 | 0.48 |
cosine_recall@10 | 0.71 |
cosine_ndcg@10 | 0.3526 |
cosine_mrr@10 | 0.2425 |
cosine_map@100 | 0.2532 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.06 |
cosine_accuracy@3 | 0.32 |
cosine_accuracy@5 | 0.46 |
cosine_accuracy@10 | 0.68 |
cosine_precision@1 | 0.06 |
cosine_precision@3 | 0.1067 |
cosine_precision@5 | 0.092 |
cosine_precision@10 | 0.068 |
cosine_recall@1 | 0.06 |
cosine_recall@3 | 0.32 |
cosine_recall@5 | 0.46 |
cosine_recall@10 | 0.68 |
cosine_ndcg@10 | 0.3393 |
cosine_mrr@10 | 0.2341 |
cosine_map@100 | 0.2451 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 900 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 159 tokens
- mean: 444.92 tokens
- max: 512 tokens
- min: 7 tokens
- mean: 21.97 tokens
- max: 82 tokens
- Samples:
positive anchor Consent
Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes and transformations of data throughout its lifecycle Data Controls Orchestrator View Data Command Center View Sensitive Data Intelligence View Asset Discovery Data Discovery & Classification Sensitive Data Catalog People Data Graph Learn more Privacy Automate compliance with global privacy regulations Data Mapping Automation View Data Subject Request Automation View People Data Graph View Assessment Automation View Cookie Consent View Universal Consent View Vendor Risk Assessment View Breach Management View Privacy Policy Management View Privacy Center View Learn more Security Identify data risk and enable protection & control Data Security Posture Management View Data Access Intelligence & Governance View Data Risk Management View Data Breach Analysis View Learn more Governance Optimize Data Governance with granular insights into your data Data Catalog View Data Lineage View Data Quality View Data Controls Orchestrator View Solutions Technologies Covering you everywhere with 1000+ integrations across data systems. Snowflake View AWS View Microsoft 365 View Salesforce View Workday View GCP View Azure View Oracle View Learn more Regulations Automate compliance with global privacy regulations. US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada, Consent PA View China PIPL View Canada PIPEDA View Brazil's LGPD View + More View Privacy View Security View Governance View Marketing View Resources Blog View Collateral View Knowledge Center View Securiti Education View Company About Us View Partner Program View Contact Us View News Coverage View Press Releases View Careers View Events Spotlight Talks IDC Names Securiti a Worldwide Leader in Data Privacy View Events Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data Command Center View Learn more Asset and Data Discovery Discover dark and native data assets Learn more Data Access Intelligence & Governance Identify which users have access to sensitive data and prevent unauthorized access Learn more Data Privacy Automation PrivacyCenter.Cloud
Data Mapping MoTC is responsible for the enforcement of the DPL. . 4 The MoTC can also impose fines of up to QAR 5 million (US$1.4 million) for violations of certain provisions of the DPL. 5 There is currently no obligation for organizations in Qatar to appoint a data protection officer under the DPL. ### Forrester Names Securiti a Leader in the Privacy Management Wave Q4, 2021 Read the Report ### Securiti named a Leader in the IDC MarketScape for Data Privacy Compliance Software Read the Report At Securiti, our mission is to enable enterprises to safely harness the incredible power of data and the cloud by controlling the complex security, privacy and compliance risks. Copyright (C) 2023 Securiti Sitemap XML Sitemap #### Newsletter #### Company About Us Careers Contact Us Partner Program News Coverage Press Releases #### Resources Blog Collateral Knowledge Center Securiti Education Privacy Center Free Do Not Sell Tool What is DSPM #### Terms Terms & Policies Security & Compliance Manage cookie preferences My Privacy Center #### Get in touch email protected 300 Santana Row Suite 450. San Jose, CA 95128 Contact Us Schedule a Demo Products By Role Data Command Center Sensitive Data Intelligence Privacy Security Governance Data Controls Orchestrator By Use Cases Back Asset Discovery Asset Discovery Data Discovery & Classification Data Discovery & Classification Sensitive Data Catalog Sensitive Data Catalog People Data Graph People Data Graph Data Mapping Automation View Data Subject Request Automation View People Data Graph View Assessment Automation View Cookie Consent View Universal Consent View Vendor Risk Assessment View Breach Management View Privacy Policy Management View Privacy Center View Data Security Posture Management View Data Access Intelligence & Governance View Data Risk Management , . 5 Infringement of the provisions of the DPA may be penalized by not more than KES 5 million or 1% of the previous fiscal year’s annual turnover. ### Forrester Names Securiti a Leader in the Privacy Management Wave Q4, 2021 Read the Report ### Securiti named a Leader in the IDC MarketScape for Data Privacy Compliance Software Read the Report At Securiti, our mission is to enable enterprises to safely harness the incredible power of data and the cloud by controlling the complex security, privacy and compliance risks. Copyright (C) 2023 Securiti Sitemap XML Sitemap #### Newsletter #### Company About Us Careers Contact Us Partner Program News Coverage Press Releases #### Resources Blog Collateral Knowledge Center Securiti Education Privacy Center Free Do Not Sell Tool What is DSPM #### Terms Terms & Policies Security & Compliance Manage cookie preferences My Privacy Center #### Get in touch email protected 300 Santana Row Suite 450. San Jose, CA 95128 Contact Us Schedule a Demo Products By Role Data Command Center Sensitive Data Intelligence Privacy Security Governance Data Controls Orchestrator By Use Cases Back Asset Discovery Asset Discovery Data Discovery & Classification Data Discovery & Classification Sensitive Data Catalog Sensitive Data Catalog People Data Graph People Data Graph Data Mapping Automation View Data Subject Request Automation View People Data Graph View Assessment Automation View Cookie Consent View Universal Consent View Vendor Risk Assessment View Breach Management View Privacy Policy Management View Privacy Center View Data Security Posture Management View Data Access Intelligence & Governance View Data Risk Management View Data Breach Analysis View Data Catalog View Data Lineage View Data Quality View
What does Securiti aim to achieve in terms of data security, privacy, and compliance risks?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 10lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.3448 | 10 | 9.0172 | - | - | - | - | - |
0.6897 | 20 | 7.8791 | - | - | - | - | - |
1.0 | 29 | - | 0.2696 | 0.2535 | 0.2642 | 0.2317 | 0.2805 |
1.0345 | 30 | 6.1959 | - | - | - | - | - |
1.3793 | 40 | 5.1573 | - | - | - | - | - |
1.7241 | 50 | 3.9165 | - | - | - | - | - |
2.0 | 58 | - | 0.2545 | 0.2678 | 0.2693 | 0.2320 | 0.2609 |
2.0690 | 60 | 3.6232 | - | - | - | - | - |
2.4138 | 70 | 3.0077 | - | - | - | - | - |
2.7586 | 80 | 2.951 | - | - | - | - | - |
3.0 | 87 | - | 0.2663 | 0.2909 | 0.2663 | 0.2438 | 0.2677 |
3.1034 | 90 | 2.3699 | - | - | - | - | - |
3.4483 | 100 | 2.404 | - | - | - | - | - |
3.7931 | 110 | 1.818 | - | - | - | - | - |
4.0 | 116 | - | 0.2752 | 0.279 | 0.2888 | 0.2447 | 0.2938 |
4.1379 | 120 | 1.4625 | - | - | - | - | - |
4.4828 | 130 | 1.9295 | - | - | - | - | - |
4.8276 | 140 | 1.5043 | - | - | - | - | - |
5.0 | 145 | - | 0.2633 | 0.2684 | 0.2771 | 0.2442 | 0.2841 |
5.1724 | 150 | 1.0966 | - | - | - | - | - |
5.5172 | 160 | 1.3741 | - | - | - | - | - |
5.8621 | 170 | 1.132 | - | - | - | - | - |
6.0 | 174 | - | 0.2635 | 0.2649 | 0.2861 | 0.2399 | 0.2760 |
6.2069 | 180 | 0.8199 | - | - | - | - | - |
6.5517 | 190 | 1.0209 | - | - | - | - | - |
6.8966 | 200 | 1.0516 | - | - | - | - | - |
7.0 | 203 | - | 0.2619 | 0.2738 | 0.2654 | 0.2474 | 0.2770 |
7.2414 | 210 | 0.7749 | - | - | - | - | - |
7.5862 | 220 | 1.0583 | - | - | - | - | - |
7.9310 | 230 | 0.832 | - | - | - | - | - |
8.0 | 232 | - | 0.2652 | 0.2739 | 0.2675 | 0.2441 | 0.2725 |
8.2759 | 240 | 0.7005 | - | - | - | - | - |
8.6207 | 250 | 0.8967 | - | - | - | - | - |
8.9655 | 260 | 0.8263 | - | - | - | - | - |
9.0 | 261 | - | 0.2609 | 0.2682 | 0.2656 | 0.2401 | 0.2817 |
9.3103 | 270 | 0.6493 | - | - | - | - | - |
9.6552 | 280 | 0.7889 | - | - | - | - | - |
10.0 | 290 | 0.7407 | 0.2532 | 0.2733 | 0.2725 | 0.2451 | 0.2814 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for MugheesAwan11/bge-base-securiti-dataset-1-v11
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.100
- Cosine Accuracy@3 on dim 768self-reported0.360
- Cosine Accuracy@5 on dim 768self-reported0.520
- Cosine Accuracy@10 on dim 768self-reported0.750
- Cosine Precision@1 on dim 768self-reported0.100
- Cosine Precision@3 on dim 768self-reported0.120
- Cosine Precision@5 on dim 768self-reported0.104
- Cosine Precision@10 on dim 768self-reported0.075
- Cosine Recall@1 on dim 768self-reported0.100
- Cosine Recall@3 on dim 768self-reported0.360