|
--- |
|
license: mit |
|
datasets: Hemanth-thunder/en_ta |
|
language: |
|
- ta |
|
- en |
|
widget: |
|
- text: Actor Vijay is competing an 2026 election. |
|
- text: you need to study well for exams |
|
--- |
|
|
|
## Model Details |
|
- **Model Name**: English-Tamil-Translator |
|
- **Model Type**: Deep Learning Model |
|
- **Language**: Python |
|
- **Task**: Language Translation |
|
|
|
## How to Use |
|
1. **Install Gemma Python Package**: |
|
```bash |
|
pip install -q -U transformers==4.38.0 |
|
``` |
|
|
|
## Inference |
|
1. **How to use the model in our notebook**: |
|
```python |
|
# Load model directly |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
checkpoint = "Mr-Vicky-01/English-Tamil-Translator" |
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) |
|
|
|
def language_translator(text): |
|
tokenized = tokenizer([text], return_tensors='pt') |
|
out = model.generate(**tokenized, max_length=128) |
|
return tokenizer.decode(out[0],skip_special_tokens=True) |
|
|
|
text_to_translate = "i have to play football now!" |
|
output = language_translator(text_to_translate) |
|
print(output) |
|
``` |