neuroFM_HE20x
ViT-large (300M parameters) trained on a diverse neuropathology dataset.
Model Usage
To get started, first clone the repository with this command:
git clone --no-checkout https://huggingface.co/MountSinaiCompPath/neuroFM_HE20x && cd neuroFM_HE20x && git sparse-checkout init --no-cone && git sparse-checkout set '/*' '!*.bin' && git checkout
Now you can use the following code:
from PIL import Image
import numpy as np
import vision_transformer
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from huggingface_hub import PyTorchModelHubMixin
class neuroFM_HE20x(nn.Module, PyTorchModelHubMixin):
def __init__(self):
super().__init__()
vit_kwargs = dict(
img_size=224,
patch_size=14,
init_values=1.0e-05,
ffn_layer='swiglufused',
block_chunks=4,
qkv_bias=True,
proj_bias=True,
ffn_bias=True,
)
self.encoder = vision_transformer.__dict__['vit_large'](**vit_kwargs)
def forward(self, x):
return self.encoder(x)
# Download model
model = neuroFM_HE20x.from_pretrained("MountSinaiCompPath/neuroFM_HE20x")
# Set up transform
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
# Image
img = np.random.randint(0, 256, size=224*224*3).reshape(224,224,3).astype(np.uint8)
img = Image.fromarray(img)
img = transform(img).unsqueeze(0)
# Inference
with torch.no_grad():
h = model(img)
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.