MooseML's picture
Update README.md
364fdf2 verified
metadata
language: en
license: mit
tags:
  - deep-learning
  - cancer-detection
  - histopathology
  - tensorflow
  - efficientnet
  - vision-transformer
  - ViT
  - medical-imaging
model_name: EfficientNetV2S & ViT-Hybrid for Histopathologic Cancer Detection
library_name: tensorflow
datasets:
  - histopathologic-cancer-detection
  - PatchCamelyon

Histopathologic Cancer Detection - EfficientNetV2S & ViT-Hybrid

This repository contains models for detecting metastatic cancer in histopathologic images.

Model Performance

  • EfficientNetV2S
    • Accuracy: 93.59% (Private), 93.74% (Public)
    • AUC: 0.9774
  • ViT-Hybrid
    • Accuracy: 95.07% (Private), 94.87% (Public)
    • AUC: 0.9791
  • ViT-Hybrid + TTA (Test-Time Augmentation)
    • Accuracy: 96.50% (Private), 96.75% (Public)

Model Use

from huggingface_hub import hf_hub_download
from tensorflow.keras.models import load_model

Download EfficientNetV2S model

model_path = hf_hub_download(repo_id="MooseML/EfficientNet-Cancer-Detection", filename="efficientnet_cancer_model.h5")
model = load_model(model_path)

Download ViT-Hybrid model

model_path_vit = hf_hub_download(repo_id="MooseML/EfficientNet-Cancer-Detection", filename="ViT_hybrid_cancer_model.h5")
model_vit = load_model(model_path_vit)

Github and Kaggle Links for Full Training Pipeline


license: mit