whisper-base-ar-upd / README.md
Mohamed2210's picture
End of training
765ba3e verified
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - private
metrics:
  - wer
model-index:
  - name: Whisper base ar - Mohamed Ahmed-Mahmoud Nasser
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: private
          type: private
          args: 'config: ar, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 18.308400460299197

Whisper base ar - Mohamed Ahmed-Mahmoud Nasser

This model is a fine-tuned version of openai/whisper-base on the private dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1244
  • Wer: 18.3084
  • Cer: 8.3096

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.107 1.0638 1000 0.1412 26.0759 10.2741
0.0927 2.1277 2000 0.1159 21.8412 9.1956
0.0601 3.1915 3000 0.1155 22.0368 9.2820
0.042 4.2553 4000 0.1135 18.7112 8.3240
0.018 5.3191 5000 0.1226 17.9517 8.1499
0.0068 6.3830 6000 0.1244 18.3084 8.3096

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.2
  • Tokenizers 0.21.0