cat_dog_classifier_with_small_datasest
This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1369
- Accuracy: 0.95
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 70 | 0.5422 | 0.8571 |
No log | 2.0 | 140 | 0.5221 | 0.8786 |
No log | 3.0 | 210 | 0.4977 | 0.8571 |
No log | 4.0 | 280 | 0.4617 | 0.8786 |
No log | 5.0 | 350 | 0.3932 | 0.9143 |
No log | 6.0 | 420 | 0.3411 | 0.9143 |
No log | 7.0 | 490 | 0.2884 | 0.9143 |
0.4971 | 8.0 | 560 | 0.2429 | 0.9286 |
0.4971 | 9.0 | 630 | 0.2151 | 0.9429 |
0.4971 | 10.0 | 700 | 0.1962 | 0.9286 |
0.4971 | 11.0 | 770 | 0.1727 | 0.9357 |
0.4971 | 12.0 | 840 | 0.1676 | 0.95 |
0.4971 | 13.0 | 910 | 0.1764 | 0.9286 |
0.4971 | 14.0 | 980 | 0.1565 | 0.9429 |
0.2878 | 15.0 | 1050 | 0.1578 | 0.9429 |
0.2878 | 16.0 | 1120 | 0.1577 | 0.9429 |
0.2878 | 17.0 | 1190 | 0.1393 | 0.9429 |
0.2878 | 18.0 | 1260 | 0.1472 | 0.9429 |
0.2878 | 19.0 | 1330 | 0.1315 | 0.95 |
0.2878 | 20.0 | 1400 | 0.1369 | 0.95 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 71
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for MoGHenry/cat_dog_classifier_with_small_datasest
Base model
microsoft/resnet-50