|
--- |
|
license: mit |
|
language: ja |
|
tags: |
|
- luke |
|
- question-answering |
|
- squad |
|
- pytorch |
|
- transformers |
|
- question answering |
|
|
|
--- |
|
|
|
# このモデルはluke-japanese-base-liteをファインチューニングして、Question-Answeringに用いれるようにしたものです。 |
|
このモデルはluke-japanese-base-liteをJSQuAD ( https://github.com/yahoojapan/JGLUE |
|
)を用いてファインチューニングしたものです。 |
|
|
|
Question-Answeringタスク(SQuAD)に用いることができます。 |
|
|
|
# This model is fine-tuned model for Question-Answering which is based on luke-japanese-base-lite |
|
|
|
This model is fine-tuned by using JSQuAD dataset. |
|
|
|
You could use this model for Question-Answering tasks. |
|
|
|
# モデルの精度 accuracy of model |
|
'em(厳密一致)': 0.7582170193606483, 'f1': 0.8761199970544952 |
|
|
|
# How to use 使い方 |
|
sentencepieceとtransformersをインストールして (pip install sentencepiece , pip install transformers) |
|
以下のコードを実行することで、Question-Answeringタスクを解かせることができます。 |
|
please execute this code. |
|
```python |
|
import torch |
|
from transformers import MLukeTokenizer, AutoModelForQuestionAnswering |
|
|
|
tokenizer = MLukeTokenizer.from_pretrained('Mizuiro-sakura/luke-japanese-base-lite-jsquad') |
|
model=AutoModelForQuestionAnswering.from_pretrained('Mizuiro-sakura/luke-japanese-base-lite-jsquad')# 学習済みモデルの読み込み |
|
|
|
text={ |
|
'context':'私の名前はEIMIです。好きな食べ物は苺です。 趣味は皆さんと会話することです。', |
|
'question' :'好きな食べ物は何ですか' |
|
} |
|
|
|
input_ids=tokenizer.encode(text['question'],text['context']) # tokenizerで形態素解析しつつコードに変換する |
|
con=tokenizer.encode(text['question']) |
|
output= model(torch.tensor([input_ids])) # 学習済みモデルを用いて解析 |
|
prediction = tokenizer.decode(input_ids[torch.argmax(output.start_logits)-2: torch.argmax(output.end_logits)-1]) # 答えに該当する部分を抜き取る |
|
prediction=prediction.replace('</s>','') |
|
print(prediction) |
|
``` |
|
|
|
|
|
# what is Luke? Lukeとは?[1] |
|
LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transformer. LUKE treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. LUKE adopts an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores. |
|
|
|
LUKE achieves state-of-the-art results on five popular NLP benchmarks including SQuAD v1.1 (extractive question answering), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), TACRED (relation classification), and Open Entity (entity typing). luke-japaneseは、単語とエンティティの知識拡張型訓練済み Transformer モデルLUKEの日本語版です。LUKE は単語とエンティティを独立したトークンとして扱い、これらの文脈を考慮した表現を出力します。 |
|
|
|
# Acknowledgments 謝辞 |
|
Lukeの開発者である山田先生とStudio ousiaさんには感謝いたします。 I would like to thank Mr.Yamada @ikuyamada and Studio ousia @StudioOusia. |
|
|
|
# Citation |
|
[1]@inproceedings{yamada2020luke, title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention}, author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto}, booktitle={EMNLP}, year={2020} } |
|
|
|
|
|
|
|
|
|
|