Covasna-0.1 / README.md
Mihaiii's picture
Update README.md
4f14f05 verified
---
base_model: migtissera/Tess-70B-v1.6
inference: false
license: llama2
metrics:
- accuracy
---
This is a BF16 and pruned version of [migtissera/Tess-70B-v1.6](https://huggingface.co/migtissera/Tess-70B-v1.6) .
[migtissera/Tess-70B-v1.6](https://huggingface.co/migtissera/Tess-70B-v1.6) has 69 billion params and Covasna-0.1 has 41.6 billion (~60.3% param size)
# Steps to replicate:
Use [laserQlora.ipynb](https://github.com/cognitivecomputations/laserRMT/blob/main/laserQlora.ipynb) from [cognitivecomputations/laserRMT](https://github.com/cognitivecomputations/laserRMT) to determine which layers should be eliminated.
Adapt the script for `migtissera/Tess-70B-v1.6` by replacing `model_name = "mistralai/Mistral-7B-v0.1"` with `model_name = "migtissera/Tess-70B-v1.6"` and `layer_numbers = list(range(31, -1, -1))` with `layer_numbers = list(range(79, -1, -1))`, [79 being the last recurrent layer index Tess-70B-v1.6 has](https://huggingface.co/migtissera/Tess-70B-v1.6?show_tensors=true).
Then look for the layer indexes where self_attn.v_proj snr is Infinity and eliminate those layers using [mergekit](https://github.com/arcee-ai/mergekit).
Here is the mergekit config:
```yml
slices:
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [0, 7]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [8, 9]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [12, 29]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [31, 32]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [33, 45]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [50, 52]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [60, 61]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [67, 68]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [74, 80]
merge_method: passthrough
dtype: bfloat16
```
GGUF:
[Covasna-0.1-GGUF](https://huggingface.co/mradermacher/Covasna-0.1-GGUF)