SNLI BERT Base Uncased
Mhammad2023/snli-bert-base-uncased
This model is a fine-tuned version of bert-base-uncased on an the Stanford Natural Language Inference (SNLI) dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.3830
- Train Accuracy: 0.8599
- Validation Loss: 0.3341
- Validation Accuracy: 0.8746
- Epoch: 2
Model Details
- Architecture: BERT-base (uncased)
- Dataset: Stanford Natural Language Inference (SNLI)
- Labels:
entailment
(0)neutral
(1)contradiction
(2)
- Framework: PyTorch
- Tokenizer:
bert-base-uncased
Intended Use
This model can be used for:
- Textual entailment tasks
- Sentence pair classification
- Natural language understanding tasks requiring inference
Limitations and Biases
The model inherits any biases present in the original SNLI dataset.
It may not generalize well to domains or sentence pairs that are significantly different from the SNLI training data.
Performance may degrade on noisy or complex linguistic inputs.
Training Data
The model is fine-tuned on the Stanford Natural Language Inference (SNLI) dataset:
SNLI Dataset: https://huggingface.co/datasets/stanfordnlp/snli
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 13500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1500, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.6102 | 0.7444 | 0.4452 | 0.8295 | 0 |
0.4504 | 0.8280 | 0.3723 | 0.8600 | 1 |
0.3830 | 0.8599 | 0.3341 | 0.8746 | 2 |
Framework versions
- Transformers 4.52.2
- TensorFlow 2.18.0
- Datasets 3.6.0
- Tokenizers 0.21.1
How to Use
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import torch.nn.functional as F
tokenizer = AutoTokenizer.from_pretrained("Mhammad2023/snli-bert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained("Mhammad2023/snli-bert-base-uncased")
premise = "A man inspects the uniform of a figure in some East Asian country."
hypothesis = "The man is sleeping."
inputs = tokenizer(premise, hypothesis, return_tensors="pt")
outputs = model(**inputs)
probs = F.softmax(outputs.logits, dim=1)
predicted_class = torch.argmax(probs).item()
label_map = {0: "entailment", 1: "neutral", 2: "contradiction"}
print(f"Prediction: {label_map[predicted_class]} with confidence {probs[0][predicted_class].item():.4f}")
- Downloads last month
- 4
Model tree for Mhammad2023/snli-bert-base-uncased
Base model
google-bert/bert-base-uncased