Mhammad2023/bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on an the CoNLL-2003 dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0271
- Validation Loss: 0.0523
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
0.1745 | 0.0598 | 0 |
0.0459 | 0.0522 | 1 |
0.0271 | 0.0523 | 2 |
Framework versions
- Transformers 4.52.4
- TensorFlow 2.18.0
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Model tree for Mhammad2023/bert-finetuned-ner
Base model
google-bert/bert-base-cased