Melo1512 commited on
Commit
df007e5
·
verified ·
1 Parent(s): c9b60ad

Model save

Browse files
Files changed (2) hide show
  1. README.md +115 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: facebook/vit-msn-small
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - imagefolder
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: vit-msn-small-ultralytics_yolo_cropped_lateral_flow_ivalidation
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: imagefolder
19
+ type: imagefolder
20
+ config: default
21
+ split: test
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.8425531914893617
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # vit-msn-small-ultralytics_yolo_cropped_lateral_flow_ivalidation
33
+
34
+ This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.3950
37
+ - Accuracy: 0.8426
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 64
58
+ - eval_batch_size: 64
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 4
61
+ - total_train_batch_size: 256
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 40
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|
71
+ | No log | 0.9231 | 3 | 0.8678 | 0.4277 |
72
+ | No log | 1.8462 | 6 | 0.6171 | 0.7 |
73
+ | No log | 2.7692 | 9 | 0.4174 | 0.8723 |
74
+ | 0.6518 | 4.0 | 13 | 0.5366 | 0.7106 |
75
+ | 0.6518 | 4.9231 | 16 | 0.3255 | 0.8851 |
76
+ | 0.6518 | 5.8462 | 19 | 0.6159 | 0.6809 |
77
+ | 0.4119 | 6.7692 | 22 | 0.3017 | 0.9191 |
78
+ | 0.4119 | 8.0 | 26 | 0.5130 | 0.7128 |
79
+ | 0.4119 | 8.9231 | 29 | 0.2183 | 0.9255 |
80
+ | 0.3387 | 9.8462 | 32 | 0.2523 | 0.9149 |
81
+ | 0.3387 | 10.7692 | 35 | 0.1774 | 0.9489 |
82
+ | 0.3387 | 12.0 | 39 | 0.2376 | 0.9255 |
83
+ | 0.3055 | 12.9231 | 42 | 0.3930 | 0.8383 |
84
+ | 0.3055 | 13.8462 | 45 | 0.2308 | 0.9234 |
85
+ | 0.3055 | 14.7692 | 48 | 0.1587 | 0.9468 |
86
+ | 0.2909 | 16.0 | 52 | 0.6113 | 0.6830 |
87
+ | 0.2909 | 16.9231 | 55 | 0.2910 | 0.8915 |
88
+ | 0.2909 | 17.8462 | 58 | 0.3612 | 0.8447 |
89
+ | 0.2227 | 18.7692 | 61 | 0.3117 | 0.8787 |
90
+ | 0.2227 | 20.0 | 65 | 0.2684 | 0.9170 |
91
+ | 0.2227 | 20.9231 | 68 | 0.3767 | 0.8404 |
92
+ | 0.2129 | 21.8462 | 71 | 0.2527 | 0.9234 |
93
+ | 0.2129 | 22.7692 | 74 | 0.3270 | 0.8745 |
94
+ | 0.2129 | 24.0 | 78 | 0.4314 | 0.8064 |
95
+ | 0.213 | 24.9231 | 81 | 0.2874 | 0.9 |
96
+ | 0.213 | 25.8462 | 84 | 0.4797 | 0.7894 |
97
+ | 0.213 | 26.7692 | 87 | 0.4896 | 0.7851 |
98
+ | 0.1758 | 28.0 | 91 | 0.3144 | 0.8723 |
99
+ | 0.1758 | 28.9231 | 94 | 0.5881 | 0.7213 |
100
+ | 0.1758 | 29.8462 | 97 | 0.5599 | 0.7298 |
101
+ | 0.1766 | 30.7692 | 100 | 0.3413 | 0.8702 |
102
+ | 0.1766 | 32.0 | 104 | 0.3453 | 0.8638 |
103
+ | 0.1766 | 32.9231 | 107 | 0.3634 | 0.8596 |
104
+ | 0.1583 | 33.8462 | 110 | 0.3799 | 0.8468 |
105
+ | 0.1583 | 34.7692 | 113 | 0.3840 | 0.8468 |
106
+ | 0.1583 | 36.0 | 117 | 0.3890 | 0.8447 |
107
+ | 0.1969 | 36.9231 | 120 | 0.3950 | 0.8426 |
108
+
109
+
110
+ ### Framework versions
111
+
112
+ - Transformers 4.44.2
113
+ - Pytorch 2.4.1+cu121
114
+ - Datasets 3.2.0
115
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:891393e3826a798676c58e362051b3bad0df08d46ab53493d02df37bb6eaf05c
3
  size 86688624
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a83547d5eb56f53b5d2dc5a224b316053e556d8ed8008f737a0968545a7e5e6e
3
  size 86688624