vit-msn-small-ultralytics_yolo_cropped_lateral_flow_ivalidation

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1774
  • Accuracy: 0.9489

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 3 0.8678 0.4277
No log 1.8462 6 0.6171 0.7
No log 2.7692 9 0.4174 0.8723
0.6518 4.0 13 0.5366 0.7106
0.6518 4.9231 16 0.3255 0.8851
0.6518 5.8462 19 0.6159 0.6809
0.4119 6.7692 22 0.3017 0.9191
0.4119 8.0 26 0.5130 0.7128
0.4119 8.9231 29 0.2183 0.9255
0.3387 9.8462 32 0.2523 0.9149
0.3387 10.7692 35 0.1774 0.9489
0.3387 12.0 39 0.2376 0.9255
0.3055 12.9231 42 0.3930 0.8383
0.3055 13.8462 45 0.2308 0.9234
0.3055 14.7692 48 0.1587 0.9468
0.2909 16.0 52 0.6113 0.6830
0.2909 16.9231 55 0.2910 0.8915
0.2909 17.8462 58 0.3612 0.8447
0.2227 18.7692 61 0.3117 0.8787
0.2227 20.0 65 0.2684 0.9170
0.2227 20.9231 68 0.3767 0.8404
0.2129 21.8462 71 0.2527 0.9234
0.2129 22.7692 74 0.3270 0.8745
0.2129 24.0 78 0.4314 0.8064
0.213 24.9231 81 0.2874 0.9
0.213 25.8462 84 0.4797 0.7894
0.213 26.7692 87 0.4896 0.7851
0.1758 28.0 91 0.3144 0.8723
0.1758 28.9231 94 0.5881 0.7213
0.1758 29.8462 97 0.5599 0.7298
0.1766 30.7692 100 0.3413 0.8702
0.1766 32.0 104 0.3453 0.8638
0.1766 32.9231 107 0.3634 0.8596
0.1583 33.8462 110 0.3799 0.8468
0.1583 34.7692 113 0.3840 0.8468
0.1583 36.0 117 0.3890 0.8447
0.1969 36.9231 120 0.3950 0.8426

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
21.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Melo1512/vit-msn-small-ultralytics_yolo_cropped_lateral_flow_ivalidation

Finetuned
(26)
this model

Evaluation results