vit-msn-small-lateral_flow_ivalidation_train_test_4

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3980
  • Accuracy: 0.8938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.3
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8038 1.0 13 0.8368 0.4029
0.6874 2.0 26 0.8356 0.4029
0.6487 3.0 39 0.8336 0.3810
0.773 4.0 52 0.8307 0.3700
0.7002 5.0 65 0.8270 0.3480
0.6991 6.0 78 0.8223 0.3407
0.6809 7.0 91 0.8164 0.3480
0.7359 8.0 104 0.8093 0.3516
0.771 9.0 117 0.8017 0.3443
0.6855 10.0 130 0.7934 0.3443
0.6674 11.0 143 0.7851 0.3480
0.6296 12.0 156 0.7746 0.3810
0.5597 13.0 169 0.7643 0.3956
0.5636 14.0 182 0.7519 0.4066
0.5718 15.0 195 0.7382 0.4432
0.5527 16.0 208 0.7256 0.4579
0.5646 17.0 221 0.7115 0.5055
0.4843 18.0 234 0.6966 0.5275
0.492 19.0 247 0.6805 0.5788
0.4865 20.0 260 0.6630 0.6117
0.4198 21.0 273 0.6448 0.6410
0.4203 22.0 286 0.6280 0.6740
0.4547 23.0 299 0.6083 0.6923
0.3916 24.0 312 0.5909 0.7143
0.4329 25.0 325 0.5768 0.7289
0.4645 26.0 338 0.5629 0.7399
0.3376 27.0 351 0.5536 0.7436
0.4417 28.0 364 0.5417 0.7729
0.3908 29.0 377 0.5262 0.7619
0.3715 30.0 390 0.5130 0.7729
0.438 31.0 403 0.5059 0.7912
0.2937 32.0 416 0.4937 0.8022
0.2944 33.0 429 0.4871 0.8022
0.3474 34.0 442 0.4820 0.8059
0.2302 35.0 455 0.4776 0.7949
0.3543 36.0 468 0.4690 0.8022
0.3325 37.0 481 0.4640 0.8059
0.4004 38.0 494 0.4584 0.8095
0.3031 39.0 507 0.4548 0.8132
0.4862 40.0 520 0.4520 0.8095
0.2609 41.0 533 0.4498 0.8278
0.1859 42.0 546 0.4450 0.8462
0.2712 43.0 559 0.4408 0.8462
0.221 44.0 572 0.4387 0.8425
0.2328 45.0 585 0.4371 0.8498
0.3004 46.0 598 0.4339 0.8425
0.2036 47.0 611 0.4318 0.8462
0.1925 48.0 624 0.4299 0.8498
0.4543 49.0 637 0.4266 0.8498
0.4056 50.0 650 0.4251 0.8462
0.2326 51.0 663 0.4247 0.8498
0.327 52.0 676 0.4224 0.8571
0.2385 53.0 689 0.4193 0.8571
0.2876 54.0 702 0.4183 0.8571
0.2257 55.0 715 0.4162 0.8718
0.252 56.0 728 0.4150 0.8755
0.4299 57.0 741 0.4129 0.8645
0.3146 58.0 754 0.4124 0.8755
0.1993 59.0 767 0.4124 0.8755
0.2507 60.0 780 0.4118 0.8791
0.324 61.0 793 0.4101 0.8535
0.2303 62.0 806 0.4090 0.8718
0.2767 63.0 819 0.4072 0.8608
0.3318 64.0 832 0.4071 0.8681
0.1946 65.0 845 0.4064 0.8681
0.4204 66.0 858 0.4055 0.8608
0.3351 67.0 871 0.4031 0.8608
0.2772 68.0 884 0.4013 0.8645
0.2969 69.0 897 0.4000 0.8681
0.2755 70.0 910 0.4021 0.8901
0.2835 71.0 923 0.4005 0.8608
0.2487 72.0 936 0.3998 0.8608
0.2447 73.0 949 0.3987 0.8571
0.3512 74.0 962 0.3970 0.8718
0.2303 75.0 975 0.3975 0.8681
0.2271 76.0 988 0.3976 0.8791
0.2325 77.0 1001 0.3980 0.8938
0.2517 78.0 1014 0.3965 0.8901
0.2839 79.0 1027 0.3956 0.8938
0.1994 80.0 1040 0.3940 0.8828
0.4525 81.0 1053 0.3934 0.8864
0.2178 82.0 1066 0.3930 0.8828
0.2784 83.0 1079 0.3929 0.8901
0.1956 84.0 1092 0.3930 0.8901
0.2713 85.0 1105 0.3922 0.8828
0.2331 86.0 1118 0.3920 0.8828
0.3294 87.0 1131 0.3917 0.8864
0.2998 88.0 1144 0.3911 0.8864
0.3767 89.0 1157 0.3909 0.8864
0.3126 90.0 1170 0.3908 0.8828
0.2427 91.0 1183 0.3903 0.8791
0.2696 92.0 1196 0.3898 0.8828
0.2664 93.0 1209 0.3897 0.8828
0.3718 94.0 1222 0.3898 0.8828
0.2813 95.0 1235 0.3899 0.8828
0.3105 96.0 1248 0.3898 0.8828
0.2452 97.0 1261 0.3901 0.8828
0.2775 98.0 1274 0.3900 0.8828
0.3814 99.0 1287 0.3901 0.8828
0.2861 100.0 1300 0.3901 0.8828

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
21.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Melo1512/vit-msn-small-lateral_flow_ivalidation_train_test_4

Finetuned
(26)
this model

Evaluation results