vit-msn-small-lateral_flow_ivalidation_train_test_1
This model is a fine-tuned version of Melo1512/vit-msn-small-lateral_flow_ivalidation_train_test_1 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3874
- Accuracy: 0.9084
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 640
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: reduce_lr_on_plateau
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 100
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3744 | 0.7692 | 1 | 0.3874 | 0.9084 |
0.3574 | 1.5385 | 2 | 0.3874 | 0.9084 |
0.3627 | 2.3077 | 3 | 0.3875 | 0.9084 |
0.3367 | 3.8462 | 5 | 0.3875 | 0.9084 |
0.3752 | 4.6154 | 6 | 0.3875 | 0.9084 |
0.3696 | 5.3846 | 7 | 0.3876 | 0.9084 |
0.3563 | 6.9231 | 9 | 0.3877 | 0.9084 |
0.3244 | 7.6923 | 10 | 0.3877 | 0.9084 |
0.3727 | 8.4615 | 11 | 0.3878 | 0.9084 |
0.3395 | 10.0 | 13 | 0.3879 | 0.9084 |
0.35 | 10.7692 | 14 | 0.3880 | 0.9084 |
0.3527 | 11.5385 | 15 | 0.3881 | 0.9084 |
0.3539 | 12.3077 | 16 | 0.3881 | 0.9084 |
0.348 | 13.8462 | 18 | 0.3883 | 0.9084 |
0.3584 | 14.6154 | 19 | 0.3884 | 0.9084 |
0.3491 | 15.3846 | 20 | 0.3884 | 0.9084 |
0.3603 | 16.9231 | 22 | 0.3886 | 0.9084 |
0.382 | 17.6923 | 23 | 0.3887 | 0.9084 |
0.3567 | 18.4615 | 24 | 0.3888 | 0.9084 |
0.3397 | 20.0 | 26 | 0.3889 | 0.9084 |
0.3682 | 20.7692 | 27 | 0.3890 | 0.9084 |
0.3336 | 21.5385 | 28 | 0.3891 | 0.9084 |
0.3399 | 22.3077 | 29 | 0.3892 | 0.9084 |
0.3656 | 23.8462 | 31 | 0.3893 | 0.9084 |
0.348 | 24.6154 | 32 | 0.3894 | 0.9084 |
0.3466 | 25.3846 | 33 | 0.3895 | 0.9084 |
0.3614 | 26.9231 | 35 | 0.3897 | 0.9084 |
0.3522 | 27.6923 | 36 | 0.3898 | 0.9084 |
0.3506 | 28.4615 | 37 | 0.3898 | 0.9084 |
0.3623 | 30.0 | 39 | 0.3900 | 0.9084 |
0.3562 | 30.7692 | 40 | 0.3901 | 0.9084 |
0.3515 | 31.5385 | 41 | 0.3902 | 0.9084 |
0.3744 | 32.3077 | 42 | 0.3903 | 0.9084 |
0.3382 | 33.8462 | 44 | 0.3904 | 0.9084 |
0.3467 | 34.6154 | 45 | 0.3905 | 0.9084 |
0.3713 | 35.3846 | 46 | 0.3906 | 0.9084 |
0.3653 | 36.9231 | 48 | 0.3908 | 0.9084 |
0.3359 | 37.6923 | 49 | 0.3909 | 0.9084 |
0.3745 | 38.4615 | 50 | 0.3910 | 0.9084 |
0.3594 | 40.0 | 52 | 0.3911 | 0.9084 |
0.3567 | 40.7692 | 53 | 0.3912 | 0.9084 |
0.3332 | 41.5385 | 54 | 0.3913 | 0.9084 |
0.3424 | 42.3077 | 55 | 0.3914 | 0.9084 |
0.3485 | 43.8462 | 57 | 0.3915 | 0.9084 |
0.3795 | 44.6154 | 58 | 0.3916 | 0.9084 |
0.321 | 45.3846 | 59 | 0.3917 | 0.9084 |
0.3314 | 46.9231 | 61 | 0.3918 | 0.9084 |
0.3582 | 47.6923 | 62 | 0.3919 | 0.9084 |
0.3355 | 48.4615 | 63 | 0.3920 | 0.9084 |
0.3688 | 50.0 | 65 | 0.3922 | 0.9084 |
0.3414 | 50.7692 | 66 | 0.3923 | 0.9084 |
0.3292 | 51.5385 | 67 | 0.3923 | 0.9084 |
0.3622 | 52.3077 | 68 | 0.3924 | 0.9048 |
0.3446 | 53.8462 | 70 | 0.3926 | 0.9048 |
0.3678 | 54.6154 | 71 | 0.3927 | 0.9011 |
0.3632 | 55.3846 | 72 | 0.3927 | 0.9011 |
0.3459 | 56.9231 | 74 | 0.3929 | 0.9011 |
0.3435 | 57.6923 | 75 | 0.3929 | 0.9011 |
0.3461 | 58.4615 | 76 | 0.3930 | 0.9011 |
0.3423 | 60.0 | 78 | 0.3931 | 0.9011 |
0.3632 | 60.7692 | 79 | 0.3932 | 0.8974 |
0.3536 | 61.5385 | 80 | 0.3933 | 0.8974 |
0.3556 | 62.3077 | 81 | 0.3934 | 0.8974 |
0.3391 | 63.8462 | 83 | 0.3935 | 0.8974 |
0.3482 | 64.6154 | 84 | 0.3936 | 0.8974 |
0.3339 | 65.3846 | 85 | 0.3937 | 0.8974 |
0.3438 | 66.9231 | 87 | 0.3938 | 0.8974 |
0.3198 | 67.6923 | 88 | 0.3939 | 0.8974 |
0.3399 | 68.4615 | 89 | 0.3939 | 0.8974 |
0.3388 | 70.0 | 91 | 0.3941 | 0.8974 |
0.3519 | 70.7692 | 92 | 0.3942 | 0.8974 |
0.3445 | 71.5385 | 93 | 0.3942 | 0.8974 |
0.3423 | 72.3077 | 94 | 0.3943 | 0.8974 |
0.3392 | 73.8462 | 96 | 0.3945 | 0.8974 |
0.3576 | 74.6154 | 97 | 0.3945 | 0.8974 |
0.3526 | 75.3846 | 98 | 0.3946 | 0.8974 |
0.3714 | 76.9231 | 100 | 0.3947 | 0.8974 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 47
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Melo1512/vit-msn-small-lateral_flow_ivalidation_train_test_1
Unable to build the model tree, the base model loops to the model itself. Learn more.