vit-msn-small-lateral_flow_ivalidation_train_test_1

This model is a fine-tuned version of Melo1512/vit-msn-small-lateral_flow_ivalidation_train_test_1 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3874
  • Accuracy: 0.9084

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 10
  • total_train_batch_size: 640
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: reduce_lr_on_plateau
  • lr_scheduler_warmup_ratio: 0.5
  • num_epochs: 100
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3744 0.7692 1 0.3874 0.9084
0.3574 1.5385 2 0.3874 0.9084
0.3627 2.3077 3 0.3875 0.9084
0.3367 3.8462 5 0.3875 0.9084
0.3752 4.6154 6 0.3875 0.9084
0.3696 5.3846 7 0.3876 0.9084
0.3563 6.9231 9 0.3877 0.9084
0.3244 7.6923 10 0.3877 0.9084
0.3727 8.4615 11 0.3878 0.9084
0.3395 10.0 13 0.3879 0.9084
0.35 10.7692 14 0.3880 0.9084
0.3527 11.5385 15 0.3881 0.9084
0.3539 12.3077 16 0.3881 0.9084
0.348 13.8462 18 0.3883 0.9084
0.3584 14.6154 19 0.3884 0.9084
0.3491 15.3846 20 0.3884 0.9084
0.3603 16.9231 22 0.3886 0.9084
0.382 17.6923 23 0.3887 0.9084
0.3567 18.4615 24 0.3888 0.9084
0.3397 20.0 26 0.3889 0.9084
0.3682 20.7692 27 0.3890 0.9084
0.3336 21.5385 28 0.3891 0.9084
0.3399 22.3077 29 0.3892 0.9084
0.3656 23.8462 31 0.3893 0.9084
0.348 24.6154 32 0.3894 0.9084
0.3466 25.3846 33 0.3895 0.9084
0.3614 26.9231 35 0.3897 0.9084
0.3522 27.6923 36 0.3898 0.9084
0.3506 28.4615 37 0.3898 0.9084
0.3623 30.0 39 0.3900 0.9084
0.3562 30.7692 40 0.3901 0.9084
0.3515 31.5385 41 0.3902 0.9084
0.3744 32.3077 42 0.3903 0.9084
0.3382 33.8462 44 0.3904 0.9084
0.3467 34.6154 45 0.3905 0.9084
0.3713 35.3846 46 0.3906 0.9084
0.3653 36.9231 48 0.3908 0.9084
0.3359 37.6923 49 0.3909 0.9084
0.3745 38.4615 50 0.3910 0.9084
0.3594 40.0 52 0.3911 0.9084
0.3567 40.7692 53 0.3912 0.9084
0.3332 41.5385 54 0.3913 0.9084
0.3424 42.3077 55 0.3914 0.9084
0.3485 43.8462 57 0.3915 0.9084
0.3795 44.6154 58 0.3916 0.9084
0.321 45.3846 59 0.3917 0.9084
0.3314 46.9231 61 0.3918 0.9084
0.3582 47.6923 62 0.3919 0.9084
0.3355 48.4615 63 0.3920 0.9084
0.3688 50.0 65 0.3922 0.9084
0.3414 50.7692 66 0.3923 0.9084
0.3292 51.5385 67 0.3923 0.9084
0.3622 52.3077 68 0.3924 0.9048
0.3446 53.8462 70 0.3926 0.9048
0.3678 54.6154 71 0.3927 0.9011
0.3632 55.3846 72 0.3927 0.9011
0.3459 56.9231 74 0.3929 0.9011
0.3435 57.6923 75 0.3929 0.9011
0.3461 58.4615 76 0.3930 0.9011
0.3423 60.0 78 0.3931 0.9011
0.3632 60.7692 79 0.3932 0.8974
0.3536 61.5385 80 0.3933 0.8974
0.3556 62.3077 81 0.3934 0.8974
0.3391 63.8462 83 0.3935 0.8974
0.3482 64.6154 84 0.3936 0.8974
0.3339 65.3846 85 0.3937 0.8974
0.3438 66.9231 87 0.3938 0.8974
0.3198 67.6923 88 0.3939 0.8974
0.3399 68.4615 89 0.3939 0.8974
0.3388 70.0 91 0.3941 0.8974
0.3519 70.7692 92 0.3942 0.8974
0.3445 71.5385 93 0.3942 0.8974
0.3423 72.3077 94 0.3943 0.8974
0.3392 73.8462 96 0.3945 0.8974
0.3576 74.6154 97 0.3945 0.8974
0.3526 75.3846 98 0.3946 0.8974
0.3714 76.9231 100 0.3947 0.8974

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
47
Safetensors
Model size
21.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Melo1512/vit-msn-small-lateral_flow_ivalidation_train_test_1

Unable to build the model tree, the base model loops to the model itself. Learn more.

Evaluation results