vit-msn-small-lateral_flow_ivalidation_train_test
This model is a fine-tuned version of Melo1512/vit-msn-small-lateral_flow_ivalidation_train_test on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3718
- Accuracy: 0.9121
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 100
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4023 | 0.9231 | 3 | 0.4126 | 0.8938 |
0.4055 | 1.8462 | 6 | 0.4096 | 0.8974 |
0.4112 | 2.7692 | 9 | 0.4275 | 0.8974 |
0.4246 | 4.0 | 13 | 0.3958 | 0.9048 |
0.376 | 4.9231 | 16 | 0.3980 | 0.9121 |
0.4226 | 5.8462 | 19 | 0.4029 | 0.9084 |
0.3751 | 6.7692 | 22 | 0.3749 | 0.9048 |
0.4135 | 8.0 | 26 | 0.3757 | 0.9121 |
0.3673 | 8.9231 | 29 | 0.4174 | 0.8901 |
0.3749 | 9.8462 | 32 | 0.4077 | 0.9048 |
0.4119 | 10.7692 | 35 | 0.4181 | 0.8901 |
0.3946 | 12.0 | 39 | 0.4189 | 0.8901 |
0.3335 | 12.9231 | 42 | 0.4029 | 0.9084 |
0.3717 | 13.8462 | 45 | 0.3963 | 0.9011 |
0.3493 | 14.7692 | 48 | 0.3797 | 0.9158 |
0.3686 | 16.0 | 52 | 0.3761 | 0.9121 |
0.3999 | 16.9231 | 55 | 0.3774 | 0.9158 |
0.3221 | 17.8462 | 58 | 0.3757 | 0.9158 |
0.3902 | 18.7692 | 61 | 0.3774 | 0.9121 |
0.3649 | 20.0 | 65 | 0.3962 | 0.9011 |
0.3553 | 20.9231 | 68 | 0.3718 | 0.9121 |
0.3761 | 21.8462 | 71 | 0.3934 | 0.9121 |
0.3422 | 22.7692 | 74 | 0.4271 | 0.8828 |
0.3247 | 24.0 | 78 | 0.3727 | 0.9194 |
0.3417 | 24.9231 | 81 | 0.3793 | 0.9121 |
0.3499 | 25.8462 | 84 | 0.4293 | 0.8791 |
0.3397 | 26.7692 | 87 | 0.4216 | 0.8901 |
0.346 | 28.0 | 91 | 0.4001 | 0.8901 |
0.3337 | 28.9231 | 94 | 0.4168 | 0.8864 |
0.3268 | 29.8462 | 97 | 0.4123 | 0.8938 |
0.3274 | 30.7692 | 100 | 0.4187 | 0.8828 |
0.3757 | 32.0 | 104 | 0.4026 | 0.8974 |
0.3727 | 32.9231 | 107 | 0.4021 | 0.8938 |
0.3431 | 33.8462 | 110 | 0.4024 | 0.9011 |
0.3626 | 34.7692 | 113 | 0.4200 | 0.8901 |
0.3381 | 36.0 | 117 | 0.4080 | 0.8938 |
0.3411 | 36.9231 | 120 | 0.4279 | 0.8791 |
0.3229 | 37.8462 | 123 | 0.4422 | 0.8718 |
0.3736 | 38.7692 | 126 | 0.4285 | 0.8791 |
0.4145 | 40.0 | 130 | 0.4402 | 0.8718 |
0.3456 | 40.9231 | 133 | 0.4226 | 0.8828 |
0.3567 | 41.8462 | 136 | 0.4113 | 0.8901 |
0.339 | 42.7692 | 139 | 0.4445 | 0.8645 |
0.3142 | 44.0 | 143 | 0.4204 | 0.8791 |
0.3461 | 44.9231 | 146 | 0.4006 | 0.8974 |
0.3583 | 45.8462 | 149 | 0.3991 | 0.9011 |
0.3651 | 46.7692 | 152 | 0.4293 | 0.8681 |
0.3098 | 48.0 | 156 | 0.4082 | 0.8901 |
0.375 | 48.9231 | 159 | 0.4095 | 0.8864 |
0.3435 | 49.8462 | 162 | 0.4529 | 0.8498 |
0.3452 | 50.7692 | 165 | 0.4440 | 0.8608 |
0.3316 | 52.0 | 169 | 0.4181 | 0.8791 |
0.3344 | 52.9231 | 172 | 0.4609 | 0.8535 |
0.3377 | 53.8462 | 175 | 0.4775 | 0.8278 |
0.3455 | 54.7692 | 178 | 0.4396 | 0.8681 |
0.3202 | 56.0 | 182 | 0.4384 | 0.8755 |
0.3119 | 56.9231 | 185 | 0.4573 | 0.8535 |
0.3633 | 57.8462 | 188 | 0.4469 | 0.8645 |
0.3025 | 58.7692 | 191 | 0.4437 | 0.8608 |
0.3094 | 60.0 | 195 | 0.4472 | 0.8571 |
0.3306 | 60.9231 | 198 | 0.4396 | 0.8681 |
0.3266 | 61.8462 | 201 | 0.4486 | 0.8681 |
0.3495 | 62.7692 | 204 | 0.4658 | 0.8352 |
0.3066 | 64.0 | 208 | 0.4754 | 0.8315 |
0.3384 | 64.9231 | 211 | 0.4518 | 0.8608 |
0.3151 | 65.8462 | 214 | 0.4614 | 0.8535 |
0.3233 | 66.7692 | 217 | 0.4638 | 0.8425 |
0.3416 | 68.0 | 221 | 0.4741 | 0.8315 |
0.3326 | 68.9231 | 224 | 0.4679 | 0.8425 |
0.331 | 69.8462 | 227 | 0.4754 | 0.8315 |
0.3595 | 70.7692 | 230 | 0.4603 | 0.8498 |
0.3107 | 72.0 | 234 | 0.4412 | 0.8571 |
0.3126 | 72.9231 | 237 | 0.4578 | 0.8571 |
0.3205 | 73.8462 | 240 | 0.4820 | 0.8242 |
0.3296 | 74.7692 | 243 | 0.5048 | 0.7985 |
0.3246 | 76.0 | 247 | 0.4792 | 0.8278 |
0.3065 | 76.9231 | 250 | 0.4842 | 0.8242 |
0.282 | 77.8462 | 253 | 0.5049 | 0.7912 |
0.3272 | 78.7692 | 256 | 0.5088 | 0.7875 |
0.325 | 80.0 | 260 | 0.4933 | 0.8132 |
0.3524 | 80.9231 | 263 | 0.4893 | 0.8132 |
0.3019 | 81.8462 | 266 | 0.4864 | 0.8132 |
0.3095 | 82.7692 | 269 | 0.4875 | 0.8132 |
0.3254 | 84.0 | 273 | 0.4910 | 0.8059 |
0.3158 | 84.9231 | 276 | 0.4918 | 0.8059 |
0.3114 | 85.8462 | 279 | 0.4936 | 0.8059 |
0.3348 | 86.7692 | 282 | 0.4996 | 0.7985 |
0.3078 | 88.0 | 286 | 0.5043 | 0.7949 |
0.3096 | 88.9231 | 289 | 0.5047 | 0.7949 |
0.2827 | 89.8462 | 292 | 0.5054 | 0.7949 |
0.3249 | 90.7692 | 295 | 0.5040 | 0.7949 |
0.3277 | 92.0 | 299 | 0.5031 | 0.7985 |
0.3522 | 92.3077 | 300 | 0.5030 | 0.7985 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Melo1512/vit-msn-small-lateral_flow_ivalidation_train_test
Unable to build the model tree, the base model loops to the model itself. Learn more.