Melo1512's picture
End of training
c8e29ba verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/vit-msn-small
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-msn-small-lateral_flow_ivalidation_green_test
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8810408921933085

vit-msn-small-lateral_flow_ivalidation_green_test

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2823
  • Accuracy: 0.8810

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 6 0.4106 0.7918
0.5328 2.0 13 0.2823 0.8810
0.5328 2.9231 19 0.3051 0.8587
0.4244 4.0 26 0.2913 0.8996
0.3755 4.9231 32 0.2841 0.9052
0.3755 6.0 39 0.3204 0.8829
0.3569 6.9231 45 0.2982 0.8810
0.3157 8.0 52 0.3317 0.8643
0.3157 8.9231 58 0.5731 0.7249
0.3177 9.2308 60 0.5725 0.7305

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1