metadata
library_name: transformers
license: apache-2.0
base_model: facebook/vit-msn-small
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-msn-small-beta-fia-manually-enhanced_test_2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7746478873239436
vit-msn-small-beta-fia-manually-enhanced_test_2
This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5203
- Accuracy: 0.7746
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 500
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.5714 | 1 | 0.6037 | 0.7465 |
No log | 1.7143 | 3 | 0.6071 | 0.7324 |
No log | 2.8571 | 5 | 0.6120 | 0.7183 |
No log | 4.0 | 7 | 0.6188 | 0.7183 |
No log | 4.5714 | 8 | 0.6206 | 0.7183 |
0.4866 | 5.7143 | 10 | 0.6272 | 0.6972 |
0.4866 | 6.8571 | 12 | 0.6355 | 0.6901 |
0.4866 | 8.0 | 14 | 0.6399 | 0.6901 |
0.4866 | 8.5714 | 15 | 0.6364 | 0.6831 |
0.4866 | 9.7143 | 17 | 0.6295 | 0.6831 |
0.4866 | 10.8571 | 19 | 0.6288 | 0.6901 |
0.4519 | 12.0 | 21 | 0.6185 | 0.6901 |
0.4519 | 12.5714 | 22 | 0.6159 | 0.6901 |
0.4519 | 13.7143 | 24 | 0.6113 | 0.6972 |
0.4519 | 14.8571 | 26 | 0.5987 | 0.6901 |
0.4519 | 16.0 | 28 | 0.6017 | 0.6972 |
0.4519 | 16.5714 | 29 | 0.6067 | 0.6972 |
0.437 | 17.7143 | 31 | 0.6062 | 0.6620 |
0.437 | 18.8571 | 33 | 0.5966 | 0.6901 |
0.437 | 20.0 | 35 | 0.5858 | 0.7113 |
0.437 | 20.5714 | 36 | 0.5889 | 0.7042 |
0.437 | 21.7143 | 38 | 0.5768 | 0.7183 |
0.4353 | 22.8571 | 40 | 0.5752 | 0.7183 |
0.4353 | 24.0 | 42 | 0.5729 | 0.7183 |
0.4353 | 24.5714 | 43 | 0.5909 | 0.6972 |
0.4353 | 25.7143 | 45 | 0.6038 | 0.6761 |
0.4353 | 26.8571 | 47 | 0.5904 | 0.6901 |
0.4353 | 28.0 | 49 | 0.5847 | 0.6831 |
0.4141 | 28.5714 | 50 | 0.5615 | 0.7113 |
0.4141 | 29.7143 | 52 | 0.5544 | 0.7254 |
0.4141 | 30.8571 | 54 | 0.5904 | 0.6690 |
0.4141 | 32.0 | 56 | 0.5948 | 0.6831 |
0.4141 | 32.5714 | 57 | 0.5800 | 0.6972 |
0.4141 | 33.7143 | 59 | 0.5902 | 0.6972 |
0.4066 | 34.8571 | 61 | 0.5950 | 0.6690 |
0.4066 | 36.0 | 63 | 0.5500 | 0.7324 |
0.4066 | 36.5714 | 64 | 0.5470 | 0.7324 |
0.4066 | 37.7143 | 66 | 0.5859 | 0.6901 |
0.4066 | 38.8571 | 68 | 0.5955 | 0.6831 |
0.3827 | 40.0 | 70 | 0.5967 | 0.6761 |
0.3827 | 40.5714 | 71 | 0.5809 | 0.6901 |
0.3827 | 41.7143 | 73 | 0.5721 | 0.6972 |
0.3827 | 42.8571 | 75 | 0.6019 | 0.6831 |
0.3827 | 44.0 | 77 | 0.6071 | 0.6901 |
0.3827 | 44.5714 | 78 | 0.5962 | 0.6972 |
0.37 | 45.7143 | 80 | 0.6114 | 0.6831 |
0.37 | 46.8571 | 82 | 0.5594 | 0.7183 |
0.37 | 48.0 | 84 | 0.5493 | 0.7324 |
0.37 | 48.5714 | 85 | 0.5744 | 0.7113 |
0.37 | 49.7143 | 87 | 0.5443 | 0.7183 |
0.37 | 50.8571 | 89 | 0.5469 | 0.7324 |
0.3797 | 52.0 | 91 | 0.6003 | 0.6831 |
0.3797 | 52.5714 | 92 | 0.6048 | 0.6901 |
0.3797 | 53.7143 | 94 | 0.5203 | 0.7746 |
0.3797 | 54.8571 | 96 | 0.5327 | 0.7535 |
0.3797 | 56.0 | 98 | 0.6414 | 0.6338 |
0.3797 | 56.5714 | 99 | 0.6562 | 0.6197 |
0.3715 | 57.7143 | 101 | 0.5754 | 0.7183 |
0.3715 | 58.8571 | 103 | 0.5672 | 0.7254 |
0.3715 | 60.0 | 105 | 0.6060 | 0.6901 |
0.3715 | 60.5714 | 106 | 0.6536 | 0.6197 |
0.3715 | 61.7143 | 108 | 0.6177 | 0.6479 |
0.3483 | 62.8571 | 110 | 0.5385 | 0.7535 |
0.3483 | 64.0 | 112 | 0.5630 | 0.7394 |
0.3483 | 64.5714 | 113 | 0.5818 | 0.7254 |
0.3483 | 65.7143 | 115 | 0.6055 | 0.6972 |
0.3483 | 66.8571 | 117 | 0.5737 | 0.7324 |
0.3483 | 68.0 | 119 | 0.5606 | 0.7394 |
0.3667 | 68.5714 | 120 | 0.5829 | 0.7183 |
0.3667 | 69.7143 | 122 | 0.5931 | 0.7113 |
0.3667 | 70.8571 | 124 | 0.5375 | 0.7606 |
0.3667 | 72.0 | 126 | 0.5797 | 0.7113 |
0.3667 | 72.5714 | 127 | 0.6182 | 0.6690 |
0.3667 | 73.7143 | 129 | 0.6497 | 0.6690 |
0.3357 | 74.8571 | 131 | 0.6432 | 0.6831 |
0.3357 | 76.0 | 133 | 0.6772 | 0.6620 |
0.3357 | 76.5714 | 134 | 0.6395 | 0.6479 |
0.3357 | 77.7143 | 136 | 0.5895 | 0.7042 |
0.3357 | 78.8571 | 138 | 0.5921 | 0.6972 |
0.3415 | 80.0 | 140 | 0.5618 | 0.7254 |
0.3415 | 80.5714 | 141 | 0.5697 | 0.7183 |
0.3415 | 81.7143 | 143 | 0.6535 | 0.6197 |
0.3415 | 82.8571 | 145 | 0.6627 | 0.6338 |
0.3415 | 84.0 | 147 | 0.6194 | 0.6761 |
0.3415 | 84.5714 | 148 | 0.6301 | 0.6901 |
0.3296 | 85.7143 | 150 | 0.6436 | 0.6690 |
0.3296 | 86.8571 | 152 | 0.6348 | 0.6831 |
0.3296 | 88.0 | 154 | 0.6704 | 0.6479 |
0.3296 | 88.5714 | 155 | 0.7190 | 0.6338 |
0.3296 | 89.7143 | 157 | 0.7064 | 0.6338 |
0.3296 | 90.8571 | 159 | 0.6291 | 0.6549 |
0.3296 | 92.0 | 161 | 0.6933 | 0.6197 |
0.3296 | 92.5714 | 162 | 0.7115 | 0.6197 |
0.3296 | 93.7143 | 164 | 0.6229 | 0.6690 |
0.3296 | 94.8571 | 166 | 0.5727 | 0.7183 |
0.3296 | 96.0 | 168 | 0.5965 | 0.6901 |
0.3296 | 96.5714 | 169 | 0.6433 | 0.6690 |
0.3174 | 97.7143 | 171 | 0.6634 | 0.6408 |
0.3174 | 98.8571 | 173 | 0.6166 | 0.6549 |
0.3174 | 100.0 | 175 | 0.5896 | 0.6972 |
0.3174 | 100.5714 | 176 | 0.6092 | 0.6549 |
0.3174 | 101.7143 | 178 | 0.6022 | 0.6549 |
0.3309 | 102.8571 | 180 | 0.5928 | 0.6761 |
0.3309 | 104.0 | 182 | 0.6327 | 0.6408 |
0.3309 | 104.5714 | 183 | 0.6490 | 0.6338 |
0.3309 | 105.7143 | 185 | 0.6155 | 0.6479 |
0.3309 | 106.8571 | 187 | 0.6225 | 0.6620 |
0.3309 | 108.0 | 189 | 0.6732 | 0.6408 |
0.3124 | 108.5714 | 190 | 0.6808 | 0.6408 |
0.3124 | 109.7143 | 192 | 0.6585 | 0.6479 |
0.3124 | 110.8571 | 194 | 0.6122 | 0.6761 |
0.3124 | 112.0 | 196 | 0.6510 | 0.6549 |
0.3124 | 112.5714 | 197 | 0.7099 | 0.6408 |
0.3124 | 113.7143 | 199 | 0.7192 | 0.6338 |
0.3158 | 114.8571 | 201 | 0.6186 | 0.6901 |
0.3158 | 116.0 | 203 | 0.6071 | 0.7042 |
0.3158 | 116.5714 | 204 | 0.6419 | 0.6831 |
0.3158 | 117.7143 | 206 | 0.6679 | 0.6549 |
0.3158 | 118.8571 | 208 | 0.6825 | 0.6268 |
0.3026 | 120.0 | 210 | 0.6091 | 0.6972 |
0.3026 | 120.5714 | 211 | 0.5861 | 0.7394 |
0.3026 | 121.7143 | 213 | 0.6037 | 0.7113 |
0.3026 | 122.8571 | 215 | 0.6315 | 0.6761 |
0.3026 | 124.0 | 217 | 0.6328 | 0.6690 |
0.3026 | 124.5714 | 218 | 0.6187 | 0.6831 |
0.2968 | 125.7143 | 220 | 0.5843 | 0.7394 |
0.2968 | 126.8571 | 222 | 0.6126 | 0.7042 |
0.2968 | 128.0 | 224 | 0.6785 | 0.6549 |
0.2968 | 128.5714 | 225 | 0.6706 | 0.6479 |
0.2968 | 129.7143 | 227 | 0.6070 | 0.7113 |
0.2968 | 130.8571 | 229 | 0.5984 | 0.7254 |
0.294 | 132.0 | 231 | 0.6533 | 0.6620 |
0.294 | 132.5714 | 232 | 0.6802 | 0.6408 |
0.294 | 133.7143 | 234 | 0.6804 | 0.6408 |
0.294 | 134.8571 | 236 | 0.6228 | 0.7042 |
0.294 | 136.0 | 238 | 0.5849 | 0.7676 |
0.294 | 136.5714 | 239 | 0.5874 | 0.7676 |
0.3009 | 137.7143 | 241 | 0.6230 | 0.7042 |
0.3009 | 138.8571 | 243 | 0.6641 | 0.6549 |
0.3009 | 140.0 | 245 | 0.6435 | 0.6972 |
0.3009 | 140.5714 | 246 | 0.6134 | 0.7254 |
0.3009 | 141.7143 | 248 | 0.6063 | 0.7394 |
0.2873 | 142.8571 | 250 | 0.6347 | 0.6972 |
0.2873 | 144.0 | 252 | 0.6992 | 0.6690 |
0.2873 | 144.5714 | 253 | 0.7137 | 0.6408 |
0.2873 | 145.7143 | 255 | 0.6738 | 0.6690 |
0.2873 | 146.8571 | 257 | 0.6321 | 0.7113 |
0.2873 | 148.0 | 259 | 0.6135 | 0.7183 |
0.2821 | 148.5714 | 260 | 0.6195 | 0.7113 |
0.2821 | 149.7143 | 262 | 0.6544 | 0.6761 |
0.2821 | 150.8571 | 264 | 0.6464 | 0.6831 |
0.2821 | 152.0 | 266 | 0.6087 | 0.7324 |
0.2821 | 152.5714 | 267 | 0.6000 | 0.7394 |
0.2821 | 153.7143 | 269 | 0.6170 | 0.7113 |
0.3017 | 154.8571 | 271 | 0.6674 | 0.6831 |
0.3017 | 156.0 | 273 | 0.7137 | 0.6338 |
0.3017 | 156.5714 | 274 | 0.7014 | 0.6479 |
0.3017 | 157.7143 | 276 | 0.6091 | 0.7254 |
0.3017 | 158.8571 | 278 | 0.5626 | 0.7676 |
0.2857 | 160.0 | 280 | 0.5685 | 0.7606 |
0.2857 | 160.5714 | 281 | 0.5941 | 0.7113 |
0.2857 | 161.7143 | 283 | 0.6219 | 0.7113 |
0.2857 | 162.8571 | 285 | 0.6283 | 0.7113 |
0.2857 | 164.0 | 287 | 0.6314 | 0.7042 |
0.2857 | 164.5714 | 288 | 0.6369 | 0.6972 |
0.2819 | 165.7143 | 290 | 0.6446 | 0.6972 |
0.2819 | 166.8571 | 292 | 0.6541 | 0.6901 |
0.2819 | 168.0 | 294 | 0.6286 | 0.7183 |
0.2819 | 168.5714 | 295 | 0.6064 | 0.7183 |
0.2819 | 169.7143 | 297 | 0.5995 | 0.7254 |
0.2819 | 170.8571 | 299 | 0.6431 | 0.7254 |
0.2744 | 172.0 | 301 | 0.6797 | 0.6901 |
0.2744 | 172.5714 | 302 | 0.6716 | 0.6972 |
0.2744 | 173.7143 | 304 | 0.6510 | 0.7254 |
0.2744 | 174.8571 | 306 | 0.6362 | 0.7465 |
0.2744 | 176.0 | 308 | 0.6158 | 0.7606 |
0.2744 | 176.5714 | 309 | 0.6099 | 0.7676 |
0.2867 | 177.7143 | 311 | 0.6112 | 0.7535 |
0.2867 | 178.8571 | 313 | 0.6035 | 0.7465 |
0.2867 | 180.0 | 315 | 0.5816 | 0.7676 |
0.2867 | 180.5714 | 316 | 0.5818 | 0.7676 |
0.2867 | 181.7143 | 318 | 0.6078 | 0.7676 |
0.2883 | 182.8571 | 320 | 0.6083 | 0.7535 |
0.2883 | 184.0 | 322 | 0.5928 | 0.7465 |
0.2883 | 184.5714 | 323 | 0.5862 | 0.7535 |
0.2883 | 185.7143 | 325 | 0.5625 | 0.7676 |
0.2883 | 186.8571 | 327 | 0.5580 | 0.7817 |
0.2883 | 188.0 | 329 | 0.5945 | 0.7535 |
0.2852 | 188.5714 | 330 | 0.6321 | 0.6972 |
0.2852 | 189.7143 | 332 | 0.6650 | 0.6620 |
0.2852 | 190.8571 | 334 | 0.6612 | 0.6690 |
0.2852 | 192.0 | 336 | 0.6455 | 0.6761 |
0.2852 | 192.5714 | 337 | 0.6290 | 0.7113 |
0.2852 | 193.7143 | 339 | 0.6036 | 0.7394 |
0.2941 | 194.8571 | 341 | 0.5879 | 0.7535 |
0.2941 | 196.0 | 343 | 0.6135 | 0.7254 |
0.2941 | 196.5714 | 344 | 0.6295 | 0.7113 |
0.2941 | 197.7143 | 346 | 0.6445 | 0.6831 |
0.2941 | 198.8571 | 348 | 0.6591 | 0.6690 |
0.2692 | 200.0 | 350 | 0.6557 | 0.6831 |
0.2692 | 200.5714 | 351 | 0.6485 | 0.7113 |
0.2692 | 201.7143 | 353 | 0.6520 | 0.7183 |
0.2692 | 202.8571 | 355 | 0.6673 | 0.7113 |
0.2692 | 204.0 | 357 | 0.6814 | 0.7183 |
0.2692 | 204.5714 | 358 | 0.6694 | 0.7113 |
0.2666 | 205.7143 | 360 | 0.6350 | 0.7254 |
0.2666 | 206.8571 | 362 | 0.6091 | 0.7465 |
0.2666 | 208.0 | 364 | 0.6222 | 0.7394 |
0.2666 | 208.5714 | 365 | 0.6363 | 0.7394 |
0.2666 | 209.7143 | 367 | 0.6398 | 0.7394 |
0.2666 | 210.8571 | 369 | 0.6555 | 0.7254 |
0.2745 | 212.0 | 371 | 0.6555 | 0.7254 |
0.2745 | 212.5714 | 372 | 0.6467 | 0.7394 |
0.2745 | 213.7143 | 374 | 0.6216 | 0.7606 |
0.2745 | 214.8571 | 376 | 0.6066 | 0.7676 |
0.2745 | 216.0 | 378 | 0.6083 | 0.7606 |
0.2745 | 216.5714 | 379 | 0.6152 | 0.7535 |
0.2578 | 217.7143 | 381 | 0.6162 | 0.7535 |
0.2578 | 218.8571 | 383 | 0.6097 | 0.7535 |
0.2578 | 220.0 | 385 | 0.6003 | 0.7465 |
0.2578 | 220.5714 | 386 | 0.6064 | 0.7535 |
0.2578 | 221.7143 | 388 | 0.6182 | 0.7535 |
0.2637 | 222.8571 | 390 | 0.6465 | 0.7465 |
0.2637 | 224.0 | 392 | 0.6461 | 0.7535 |
0.2637 | 224.5714 | 393 | 0.6352 | 0.7535 |
0.2637 | 225.7143 | 395 | 0.6018 | 0.7606 |
0.2637 | 226.8571 | 397 | 0.5855 | 0.7746 |
0.2637 | 228.0 | 399 | 0.5916 | 0.7606 |
0.2696 | 228.5714 | 400 | 0.6031 | 0.7606 |
0.2696 | 229.7143 | 402 | 0.6308 | 0.7606 |
0.2696 | 230.8571 | 404 | 0.6435 | 0.7465 |
0.2696 | 232.0 | 406 | 0.6325 | 0.7465 |
0.2696 | 232.5714 | 407 | 0.6212 | 0.7535 |
0.2696 | 233.7143 | 409 | 0.5986 | 0.7535 |
0.2697 | 234.8571 | 411 | 0.5964 | 0.7465 |
0.2697 | 236.0 | 413 | 0.5950 | 0.7465 |
0.2697 | 236.5714 | 414 | 0.5986 | 0.7465 |
0.2697 | 237.7143 | 416 | 0.6066 | 0.7535 |
0.2697 | 238.8571 | 418 | 0.6035 | 0.7535 |
0.2659 | 240.0 | 420 | 0.6039 | 0.7535 |
0.2659 | 240.5714 | 421 | 0.6004 | 0.7535 |
0.2659 | 241.7143 | 423 | 0.6001 | 0.7535 |
0.2659 | 242.8571 | 425 | 0.5941 | 0.7465 |
0.2659 | 244.0 | 427 | 0.5942 | 0.7394 |
0.2659 | 244.5714 | 428 | 0.5972 | 0.7465 |
0.2529 | 245.7143 | 430 | 0.6077 | 0.7535 |
0.2529 | 246.8571 | 432 | 0.6173 | 0.7465 |
0.2529 | 248.0 | 434 | 0.6129 | 0.7606 |
0.2529 | 248.5714 | 435 | 0.6099 | 0.7606 |
0.2529 | 249.7143 | 437 | 0.6005 | 0.7606 |
0.2529 | 250.8571 | 439 | 0.5920 | 0.7606 |
0.261 | 252.0 | 441 | 0.5946 | 0.7606 |
0.261 | 252.5714 | 442 | 0.5992 | 0.7606 |
0.261 | 253.7143 | 444 | 0.6142 | 0.7606 |
0.261 | 254.8571 | 446 | 0.6289 | 0.7465 |
0.261 | 256.0 | 448 | 0.6316 | 0.7465 |
0.261 | 256.5714 | 449 | 0.6302 | 0.7535 |
0.2675 | 257.7143 | 451 | 0.6241 | 0.7535 |
0.2675 | 258.8571 | 453 | 0.6129 | 0.7535 |
0.2675 | 260.0 | 455 | 0.6066 | 0.7465 |
0.2675 | 260.5714 | 456 | 0.6061 | 0.7465 |
0.2675 | 261.7143 | 458 | 0.6098 | 0.7535 |
0.2737 | 262.8571 | 460 | 0.6172 | 0.7394 |
0.2737 | 264.0 | 462 | 0.6274 | 0.7324 |
0.2737 | 264.5714 | 463 | 0.6298 | 0.7324 |
0.2737 | 265.7143 | 465 | 0.6296 | 0.7324 |
0.2737 | 266.8571 | 467 | 0.6285 | 0.7324 |
0.2737 | 268.0 | 469 | 0.6265 | 0.7324 |
0.2504 | 268.5714 | 470 | 0.6274 | 0.7465 |
0.2504 | 269.7143 | 472 | 0.6286 | 0.7394 |
0.2504 | 270.8571 | 474 | 0.6236 | 0.7465 |
0.2504 | 272.0 | 476 | 0.6178 | 0.7465 |
0.2504 | 272.5714 | 477 | 0.6164 | 0.7465 |
0.2504 | 273.7143 | 479 | 0.6161 | 0.7465 |
0.2539 | 274.8571 | 481 | 0.6193 | 0.7465 |
0.2539 | 276.0 | 483 | 0.6236 | 0.7394 |
0.2539 | 276.5714 | 484 | 0.6258 | 0.7394 |
0.2539 | 277.7143 | 486 | 0.6308 | 0.7394 |
0.2539 | 278.8571 | 488 | 0.6349 | 0.7394 |
0.2508 | 280.0 | 490 | 0.6352 | 0.7394 |
0.2508 | 280.5714 | 491 | 0.6346 | 0.7394 |
0.2508 | 281.7143 | 493 | 0.6336 | 0.7394 |
0.2508 | 282.8571 | 495 | 0.6331 | 0.7394 |
0.2508 | 284.0 | 497 | 0.6324 | 0.7394 |
0.2508 | 284.5714 | 498 | 0.6319 | 0.7394 |
0.2393 | 285.7143 | 500 | 0.6316 | 0.7394 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1