Melo1512's picture
End of training
150cc80 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/vit-msn-small
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-msn-small-beta-fia-manually-enhanced_test_1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7464788732394366

vit-msn-small-beta-fia-manually-enhanced_test_1

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7014
  • Accuracy: 0.7465

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 50
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.5714 1 0.9554 0.3732
No log 1.7143 3 0.9304 0.5211
No log 2.8571 5 0.8979 0.6338
No log 4.0 7 0.8770 0.6479
No log 4.5714 8 0.8595 0.6408
0.877 5.7143 10 0.8456 0.5634
0.877 6.8571 12 0.8825 0.4859
0.877 8.0 14 0.8294 0.5563
0.877 8.5714 15 0.7883 0.6197
0.877 9.7143 17 0.7541 0.6549
0.877 10.8571 19 0.7689 0.6690
0.7053 12.0 21 0.7652 0.6620
0.7053 12.5714 22 0.7496 0.6690
0.7053 13.7143 24 0.7139 0.7183
0.7053 14.8571 26 0.7014 0.7465
0.7053 16.0 28 0.7290 0.7183
0.7053 16.5714 29 0.7431 0.6901
0.6176 17.7143 31 0.7498 0.6690
0.6176 18.8571 33 0.7439 0.6761
0.6176 20.0 35 0.7347 0.6972
0.6176 20.5714 36 0.7377 0.6901
0.6176 21.7143 38 0.7227 0.6901
0.6053 22.8571 40 0.7228 0.7042
0.6053 24.0 42 0.7282 0.6901
0.6053 24.5714 43 0.7363 0.6761
0.6053 25.7143 45 0.7431 0.6831
0.6053 26.8571 47 0.7450 0.6831
0.6053 28.0 49 0.7455 0.6761
0.5926 28.5714 50 0.7447 0.6761

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1