vit-msn-small-beta-fia-manually-enhanced-HSV_test_5

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3267
  • Accuracy: 0.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 5
  • total_train_batch_size: 320
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.25
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.7143 1 1.1106 0.2292
No log 1.4286 2 1.0984 0.2569
No log 2.8571 4 1.0400 0.4097
No log 3.5714 5 0.9960 0.5486
No log 5.0 7 0.8868 0.7292
No log 5.7143 8 0.8263 0.7778
No log 6.4286 9 0.7651 0.8056
0.9808 7.8571 11 0.6521 0.8125
0.9808 8.5714 12 0.6052 0.8125
0.9808 10.0 14 0.5388 0.8125
0.9808 10.7143 15 0.5174 0.8125
0.9808 11.4286 16 0.5032 0.8125
0.9808 12.8571 18 0.5022 0.8125
0.9808 13.5714 19 0.5044 0.8194
0.5431 15.0 21 0.4773 0.8264
0.5431 15.7143 22 0.4439 0.8333
0.5431 16.4286 23 0.4198 0.8403
0.5431 17.8571 25 0.3873 0.8819
0.5431 18.5714 26 0.3730 0.8889
0.5431 20.0 28 0.3774 0.9028
0.5431 20.7143 29 0.3705 0.9097
0.4028 21.4286 30 0.3587 0.9097
0.4028 22.8571 32 0.3662 0.8958
0.4028 23.5714 33 0.3779 0.8681
0.4028 25.0 35 0.4322 0.8264
0.4028 25.7143 36 0.3944 0.8333
0.4028 26.4286 37 0.3585 0.8889
0.4028 27.8571 39 0.3608 0.8889
0.3497 28.5714 40 0.3972 0.8472
0.3497 30.0 42 0.3805 0.8611
0.3497 30.7143 43 0.3611 0.8819
0.3497 31.4286 44 0.3267 0.9167
0.3497 32.8571 46 0.3403 0.9028
0.3497 33.5714 47 0.3751 0.875
0.3497 35.0 49 0.3801 0.8681
0.3278 35.7143 50 0.3499 0.8958
0.3278 36.4286 51 0.3384 0.8958
0.3278 37.8571 53 0.3642 0.8542
0.3278 38.5714 54 0.3997 0.8194
0.3278 40.0 56 0.3843 0.8403
0.3278 40.7143 57 0.3676 0.8681
0.3278 41.4286 58 0.3464 0.9028
0.3334 42.8571 60 0.3618 0.8819
0.3334 43.5714 61 0.4006 0.8194
0.3334 45.0 63 0.4931 0.7639
0.3334 45.7143 64 0.4845 0.7708
0.3334 46.4286 65 0.4485 0.7917
0.3334 47.8571 67 0.3783 0.8472
0.3334 48.5714 68 0.3723 0.8472
0.3334 50.0 70 0.4077 0.8125
0.3334 50.7143 71 0.4381 0.7986
0.3334 51.4286 72 0.4627 0.7847
0.3334 52.8571 74 0.4445 0.7986
0.3334 53.5714 75 0.4141 0.8125
0.3334 55.0 77 0.3489 0.8681
0.3334 55.7143 78 0.3371 0.8958
0.3334 56.4286 79 0.3358 0.8889
0.3105 57.8571 81 0.3539 0.8681
0.3105 58.5714 82 0.3678 0.8542
0.3105 60.0 84 0.3931 0.8264
0.3105 60.7143 85 0.3938 0.8264
0.3105 61.4286 86 0.3897 0.8472
0.3105 62.8571 88 0.3638 0.8611
0.3105 63.5714 89 0.3496 0.875
0.3061 65.0 91 0.3305 0.8958
0.3061 65.7143 92 0.3284 0.9028
0.3061 66.4286 93 0.3284 0.8958
0.3061 67.8571 95 0.3337 0.8958
0.3061 68.5714 96 0.3374 0.8889
0.3061 70.0 98 0.3442 0.875
0.3061 70.7143 99 0.3452 0.875
0.3137 71.4286 100 0.3460 0.875

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
21.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_5

Finetuned
(26)
this model

Evaluation results