File size: 22,464 Bytes
9b47fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "T4"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "installing required libraries\n"
      ],
      "metadata": {
        "id": "IhtNWaiM0V3D"
      }
    },
    {
      "source": [
        "!pip install datasets==2.14.5\n",
        "!pip install transformers==4.28.0\n",
        "!pip install protobuf==3.20.*"
      ],
      "cell_type": "code",
      "metadata": {
        "collapsed": true,
        "id": "cxFRfDCoLJzH"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "importing the dataset from hugging face and splitting it"
      ],
      "metadata": {
        "id": "W27dIock0c5K"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "collapsed": true,
        "id": "XR0cgTdaKWAC"
      },
      "outputs": [],
      "source": [
        "from datasets import load_dataset\n",
        "\n",
        "dataset = load_dataset(\"SKNahin/bengali-transliteration-data\")\n",
        "\n",
        "split_dataset = dataset['train'].train_test_split(test_size=0.2, seed=42)\n",
        "\n",
        "train_dataset = split_dataset['train']\n",
        "val_dataset = split_dataset['test']\n",
        "\n",
        "print(f\"Training samples: {len(train_dataset)}, Validation samples: {len(val_dataset)}\")\n"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "tokenizing the data and training the model"
      ],
      "metadata": {
        "id": "o75NKyHh0lD0"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from transformers import MBartForConditionalGeneration, MBart50TokenizerFast, Trainer, TrainingArguments\n",
        "import torch\n",
        "\n",
        "model_name = \"facebook/mbart-large-50\"\n",
        "tokenizer = MBart50TokenizerFast.from_pretrained(model_name)\n",
        "model = MBartForConditionalGeneration.from_pretrained(model_name)\n",
        "\n",
        "\n",
        "tokenizer.src_lang = \"en_XX\"\n",
        "tokenizer.tgt_lang = \"bn_IN\"\n",
        "\n",
        "\n",
        "def preprocess(batch):\n",
        "    inputs = tokenizer(batch[\"rm\"], max_length=128, truncation=True, padding=\"max_length\")\n",
        "    targets = tokenizer(batch[\"bn\"], max_length=128, truncation=True, padding=\"max_length\")\n",
        "    inputs[\"labels\"] = targets[\"input_ids\"]\n",
        "    return inputs\n",
        "\n",
        "\n",
        "train_dataset = train_dataset.map(preprocess, batched=True)\n",
        "val_dataset = val_dataset.map(preprocess, batched=True)\n",
        "\n",
        "\n",
        "train_dataset.set_format(type=\"torch\", columns=[\"input_ids\", \"attention_mask\", \"labels\"])\n",
        "val_dataset.set_format(type=\"torch\", columns=[\"input_ids\", \"attention_mask\", \"labels\"])\n",
        "\n",
        "\n",
        "training_args = TrainingArguments(\n",
        "    output_dir=\"./mbart_results\",\n",
        "    evaluation_strategy=\"epoch\",\n",
        "    learning_rate=3e-5,\n",
        "    per_device_train_batch_size=2,\n",
        "    per_device_eval_batch_size=2,\n",
        "    num_train_epochs=5,\n",
        "    weight_decay=0.01,\n",
        "    save_total_limit=2,\n",
        "    logging_dir=\"./mbart_logs\",\n",
        "    logging_steps=10,\n",
        "    save_steps=500,\n",
        "    fp16=torch.cuda.is_available(),\n",
        ")\n",
        "\n",
        "trainer = Trainer(\n",
        "    model=model,\n",
        "    args=training_args,\n",
        "    train_dataset=train_dataset,\n",
        "    eval_dataset=val_dataset,\n",
        "    tokenizer=tokenizer,\n",
        ")\n",
        "\n",
        "trainer.train()\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 339
        },
        "outputId": "0af79106-6873-472c-8d6a-6d385d2d151b",
        "id": "06Q9XzHVg8v6",
        "collapsed": true
      },
      "execution_count": 3,
      "outputs": [
        {
          "output_type": "error",
          "ename": "KeyboardInterrupt",
          "evalue": "",
          "traceback": [
            "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
            "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
            "\u001b[0;32m<ipython-input-3-3ccb4aa8eee1>\u001b[0m in \u001b[0;36m<cell line: 54>\u001b[0;34m()\u001b[0m\n\u001b[1;32m     52\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     53\u001b[0m \u001b[0;31m# Train the model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 54\u001b[0;31m \u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m   1660\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_inner_training_loop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_train_batch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_find_batch_size\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1661\u001b[0m         )\n\u001b[0;32m-> 1662\u001b[0;31m         return inner_training_loop(\n\u001b[0m\u001b[1;32m   1663\u001b[0m             \u001b[0margs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1664\u001b[0m             \u001b[0mresume_from_checkpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mresume_from_checkpoint\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36m_inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m   2004\u001b[0m                     \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcallback_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_step_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2005\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2006\u001b[0;31m                     \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_log_save_evaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtr_loss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrial\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepoch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mignore_keys_for_eval\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   2007\u001b[0m                 \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2008\u001b[0m                     \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcallback_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_substep_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36m_maybe_log_save_evaluate\u001b[0;34m(self, tr_loss, model, trial, epoch, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m   2289\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2290\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshould_save\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2291\u001b[0;31m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_save_checkpoint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrial\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmetrics\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmetrics\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   2292\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcallback_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_save\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2293\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36m_save_checkpoint\u001b[0;34m(self, model, trial, metrics)\u001b[0m\n\u001b[1;32m   2346\u001b[0m         \u001b[0mrun_dir\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_output_dir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrial\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtrial\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2347\u001b[0m         \u001b[0moutput_dir\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcheckpoint_folder\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2348\u001b[0;31m         \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_model\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_internal_call\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   2349\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdeepspeed\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2350\u001b[0m             \u001b[0;31m# under zero3 model file itself doesn't get saved since it's bogus! Unless deepspeed\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36msave_model\u001b[0;34m(self, output_dir, _internal_call)\u001b[0m\n\u001b[1;32m   2828\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2829\u001b[0m         \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshould_save\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2830\u001b[0;31m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_save\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput_dir\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   2831\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2832\u001b[0m         \u001b[0;31m# Push to the Hub when `save_model` is called by the user.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36m_save\u001b[0;34m(self, output_dir, state_dict)\u001b[0m\n\u001b[1;32m   2884\u001b[0m                     \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstate_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mWEIGHTS_NAME\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2885\u001b[0m         \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2886\u001b[0;31m             self.model.save_pretrained(\n\u001b[0m\u001b[1;32m   2887\u001b[0m                 \u001b[0moutput_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstate_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mstate_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msafe_serialization\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_safetensors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2888\u001b[0m             )\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py\u001b[0m in \u001b[0;36msave_pretrained\u001b[0;34m(self, save_directory, is_main_process, state_dict, save_function, push_to_hub, max_shard_size, safe_serialization, variant, **kwargs)\u001b[0m\n\u001b[1;32m   1841\u001b[0m                 \u001b[0msafe_save_file\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshard\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msave_directory\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshard_file\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmetadata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m\"format\"\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m\"pt\"\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1842\u001b[0m             \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1843\u001b[0;31m                 \u001b[0msave_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshard\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msave_directory\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshard_file\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1844\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1845\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/serialization.py\u001b[0m in \u001b[0;36msave\u001b[0;34m(obj, f, pickle_module, pickle_protocol, _use_new_zipfile_serialization, _disable_byteorder_record)\u001b[0m\n\u001b[1;32m    848\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0m_use_new_zipfile_serialization\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    849\u001b[0m         \u001b[0;32mwith\u001b[0m \u001b[0m_open_zipfile_writer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mopened_zipfile\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 850\u001b[0;31m             _save(\n\u001b[0m\u001b[1;32m    851\u001b[0m                 \u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    852\u001b[0m                 \u001b[0mopened_zipfile\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/serialization.py\u001b[0m in \u001b[0;36m_save\u001b[0;34m(obj, zip_file, pickle_module, pickle_protocol, _disable_byteorder_record)\u001b[0m\n\u001b[1;32m   1112\u001b[0m                 \u001b[0mstorage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstorage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcpu\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1113\u001b[0m             \u001b[0;31m# Now that it is on the CPU we can directly copy it into the zip file\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1114\u001b[0;31m             \u001b[0mzip_file\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_record\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstorage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_bytes\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1115\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1116\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "evaluating the model and generating predictions"
      ],
      "metadata": {
        "id": "N2KBMAZi2PwO"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import torch\n",
        "\n",
        "sample = val_dataset.select(range(10))\n",
        "inputs = sample[\"input_ids\"]\n",
        "\n",
        "if torch.cuda.is_available():\n",
        "    inputs = inputs.cuda()\n",
        "\n",
        "preds = model.generate(inputs)\n",
        "\n",
        "decoded_preds = [tokenizer.decode(pred, skip_special_tokens=True, clean_up_tokenization_spaces=True) for pred in preds]\n",
        "decoded_labels = [tokenizer.decode(label, skip_special_tokens=True, clean_up_tokenization_spaces=True) for label in sample[\"labels\"]]\n",
        "\n",
        "for i, (pred, label) in enumerate(zip(decoded_preds, decoded_labels)):\n",
        "    print(f\"Sample {i + 1}\")\n",
        "    print(f\"Prediction: {pred}\")\n",
        "    print(f\"Label: {label}\\n\")\n"
      ],
      "metadata": {
        "collapsed": true,
        "id": "bVnn2zoxQFxc"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "saving the fine tuned model"
      ],
      "metadata": {
        "id": "G2lVyL663QgH"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "model.save_pretrained(\"./banglish-to-bangla\")\n",
        "tokenizer.save_pretrained(\"./banglish-to-bangla\")"
      ],
      "metadata": {
        "id": "c-4-GqLRZT-C",
        "collapsed": true
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "taking custom input from the user to check"
      ],
      "metadata": {
        "id": "2nA9BzIT3Tmb"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import torch\n",
        "\n",
        "def translate_banglish_to_bangla(model, tokenizer, banglish_input):\n",
        "    inputs = tokenizer(banglish_input, return_tensors=\"pt\", padding=True, truncation=True, max_length=128)\n",
        "\n",
        "    if torch.cuda.is_available():\n",
        "        inputs = {key: value.cuda() for key, value in inputs.items()}\n",
        "        model = model.cuda()\n",
        "\n",
        "    translated_tokens = model.generate(**inputs, decoder_start_token_id=tokenizer.lang_code_to_id[\"bn_IN\"])\n",
        "    translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]\n",
        "\n",
        "    return translated_text\n",
        "\n",
        "print(\"Enter your Banglish text (type 'exit' to quit):\")\n",
        "while True:\n",
        "    banglish_text = input(\"Banglish: \")\n",
        "    if banglish_text.lower() == \"exit\":\n",
        "        break\n",
        "\n",
        "\n",
        "    translated_text = translate_banglish_to_bangla(model, tokenizer, banglish_text)\n",
        "    print(f\"Translated Bangla: {translated_text}\\n\")\n"
      ],
      "metadata": {
        "id": "uQ-HtJ7ledXW"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "exporting the model in .zip format"
      ],
      "metadata": {
        "id": "RoOeyvDa3b_y"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from google.colab import files\n",
        "import zipfile\n",
        "\n",
        "def zipdir(path, ziph):\n",
        "    # ziph is zipfile handle\n",
        "    for root, dirs, files in os.walk(path):\n",
        "        for file in files:\n",
        "            ziph.write(os.path.join(root, file))\n",
        "\n",
        "import os\n",
        "if not os.path.exists(\"./banglish-to-bangla\"):\n",
        "    print(\"Directory ./banglish-to-bangla not found. Please run the training code first.\")\n",
        "else:\n",
        "  zipf = zipfile.ZipFile('banglish-to-bangla.zip', 'w', zipfile.ZIP_DEFLATED)\n",
        "  zipdir('./banglish-to-bangla', zipf)\n",
        "  zipf.close()\n",
        "  files.download('banglish-to-bangla.zip')"
      ],
      "metadata": {
        "id": "cP8HldTAaHqo"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}