File size: 22,464 Bytes
9b47fda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"gpuType": "T4"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"source": [
"installing required libraries\n"
],
"metadata": {
"id": "IhtNWaiM0V3D"
}
},
{
"source": [
"!pip install datasets==2.14.5\n",
"!pip install transformers==4.28.0\n",
"!pip install protobuf==3.20.*"
],
"cell_type": "code",
"metadata": {
"collapsed": true,
"id": "cxFRfDCoLJzH"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"importing the dataset from hugging face and splitting it"
],
"metadata": {
"id": "W27dIock0c5K"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"id": "XR0cgTdaKWAC"
},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"\n",
"dataset = load_dataset(\"SKNahin/bengali-transliteration-data\")\n",
"\n",
"split_dataset = dataset['train'].train_test_split(test_size=0.2, seed=42)\n",
"\n",
"train_dataset = split_dataset['train']\n",
"val_dataset = split_dataset['test']\n",
"\n",
"print(f\"Training samples: {len(train_dataset)}, Validation samples: {len(val_dataset)}\")\n"
]
},
{
"cell_type": "markdown",
"source": [
"tokenizing the data and training the model"
],
"metadata": {
"id": "o75NKyHh0lD0"
}
},
{
"cell_type": "code",
"source": [
"from transformers import MBartForConditionalGeneration, MBart50TokenizerFast, Trainer, TrainingArguments\n",
"import torch\n",
"\n",
"model_name = \"facebook/mbart-large-50\"\n",
"tokenizer = MBart50TokenizerFast.from_pretrained(model_name)\n",
"model = MBartForConditionalGeneration.from_pretrained(model_name)\n",
"\n",
"\n",
"tokenizer.src_lang = \"en_XX\"\n",
"tokenizer.tgt_lang = \"bn_IN\"\n",
"\n",
"\n",
"def preprocess(batch):\n",
" inputs = tokenizer(batch[\"rm\"], max_length=128, truncation=True, padding=\"max_length\")\n",
" targets = tokenizer(batch[\"bn\"], max_length=128, truncation=True, padding=\"max_length\")\n",
" inputs[\"labels\"] = targets[\"input_ids\"]\n",
" return inputs\n",
"\n",
"\n",
"train_dataset = train_dataset.map(preprocess, batched=True)\n",
"val_dataset = val_dataset.map(preprocess, batched=True)\n",
"\n",
"\n",
"train_dataset.set_format(type=\"torch\", columns=[\"input_ids\", \"attention_mask\", \"labels\"])\n",
"val_dataset.set_format(type=\"torch\", columns=[\"input_ids\", \"attention_mask\", \"labels\"])\n",
"\n",
"\n",
"training_args = TrainingArguments(\n",
" output_dir=\"./mbart_results\",\n",
" evaluation_strategy=\"epoch\",\n",
" learning_rate=3e-5,\n",
" per_device_train_batch_size=2,\n",
" per_device_eval_batch_size=2,\n",
" num_train_epochs=5,\n",
" weight_decay=0.01,\n",
" save_total_limit=2,\n",
" logging_dir=\"./mbart_logs\",\n",
" logging_steps=10,\n",
" save_steps=500,\n",
" fp16=torch.cuda.is_available(),\n",
")\n",
"\n",
"trainer = Trainer(\n",
" model=model,\n",
" args=training_args,\n",
" train_dataset=train_dataset,\n",
" eval_dataset=val_dataset,\n",
" tokenizer=tokenizer,\n",
")\n",
"\n",
"trainer.train()\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 339
},
"outputId": "0af79106-6873-472c-8d6a-6d385d2d151b",
"id": "06Q9XzHVg8v6",
"collapsed": true
},
"execution_count": 3,
"outputs": [
{
"output_type": "error",
"ename": "KeyboardInterrupt",
"evalue": "",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-3-3ccb4aa8eee1>\u001b[0m in \u001b[0;36m<cell line: 54>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 52\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0;31m# Train the model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 54\u001b[0;31m \u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 1660\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_inner_training_loop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_train_batch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_find_batch_size\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1661\u001b[0m )\n\u001b[0;32m-> 1662\u001b[0;31m return inner_training_loop(\n\u001b[0m\u001b[1;32m 1663\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1664\u001b[0m \u001b[0mresume_from_checkpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mresume_from_checkpoint\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36m_inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 2004\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcallback_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_step_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2005\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2006\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_log_save_evaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtr_loss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrial\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepoch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mignore_keys_for_eval\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2007\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2008\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcallback_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_substep_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36m_maybe_log_save_evaluate\u001b[0;34m(self, tr_loss, model, trial, epoch, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 2289\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2290\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshould_save\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2291\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_save_checkpoint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrial\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmetrics\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmetrics\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2292\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcallback_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_save\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2293\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36m_save_checkpoint\u001b[0;34m(self, model, trial, metrics)\u001b[0m\n\u001b[1;32m 2346\u001b[0m \u001b[0mrun_dir\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_output_dir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrial\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtrial\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2347\u001b[0m \u001b[0moutput_dir\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcheckpoint_folder\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2348\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_model\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_internal_call\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2349\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdeepspeed\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2350\u001b[0m \u001b[0;31m# under zero3 model file itself doesn't get saved since it's bogus! Unless deepspeed\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36msave_model\u001b[0;34m(self, output_dir, _internal_call)\u001b[0m\n\u001b[1;32m 2828\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2829\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshould_save\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2830\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_save\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput_dir\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2831\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2832\u001b[0m \u001b[0;31m# Push to the Hub when `save_model` is called by the user.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36m_save\u001b[0;34m(self, output_dir, state_dict)\u001b[0m\n\u001b[1;32m 2884\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstate_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mWEIGHTS_NAME\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2885\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2886\u001b[0;31m self.model.save_pretrained(\n\u001b[0m\u001b[1;32m 2887\u001b[0m \u001b[0moutput_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstate_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mstate_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msafe_serialization\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_safetensors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2888\u001b[0m )\n",
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py\u001b[0m in \u001b[0;36msave_pretrained\u001b[0;34m(self, save_directory, is_main_process, state_dict, save_function, push_to_hub, max_shard_size, safe_serialization, variant, **kwargs)\u001b[0m\n\u001b[1;32m 1841\u001b[0m \u001b[0msafe_save_file\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshard\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msave_directory\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshard_file\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmetadata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m\"format\"\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m\"pt\"\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1842\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1843\u001b[0;31m \u001b[0msave_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshard\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msave_directory\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshard_file\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1844\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1845\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/serialization.py\u001b[0m in \u001b[0;36msave\u001b[0;34m(obj, f, pickle_module, pickle_protocol, _use_new_zipfile_serialization, _disable_byteorder_record)\u001b[0m\n\u001b[1;32m 848\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m_use_new_zipfile_serialization\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 849\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0m_open_zipfile_writer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mopened_zipfile\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 850\u001b[0;31m _save(\n\u001b[0m\u001b[1;32m 851\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 852\u001b[0m \u001b[0mopened_zipfile\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/serialization.py\u001b[0m in \u001b[0;36m_save\u001b[0;34m(obj, zip_file, pickle_module, pickle_protocol, _disable_byteorder_record)\u001b[0m\n\u001b[1;32m 1112\u001b[0m \u001b[0mstorage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstorage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcpu\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1113\u001b[0m \u001b[0;31m# Now that it is on the CPU we can directly copy it into the zip file\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1114\u001b[0;31m \u001b[0mzip_file\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_record\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstorage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_bytes\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1115\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1116\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
]
},
{
"cell_type": "markdown",
"source": [
"evaluating the model and generating predictions"
],
"metadata": {
"id": "N2KBMAZi2PwO"
}
},
{
"cell_type": "code",
"source": [
"import torch\n",
"\n",
"sample = val_dataset.select(range(10))\n",
"inputs = sample[\"input_ids\"]\n",
"\n",
"if torch.cuda.is_available():\n",
" inputs = inputs.cuda()\n",
"\n",
"preds = model.generate(inputs)\n",
"\n",
"decoded_preds = [tokenizer.decode(pred, skip_special_tokens=True, clean_up_tokenization_spaces=True) for pred in preds]\n",
"decoded_labels = [tokenizer.decode(label, skip_special_tokens=True, clean_up_tokenization_spaces=True) for label in sample[\"labels\"]]\n",
"\n",
"for i, (pred, label) in enumerate(zip(decoded_preds, decoded_labels)):\n",
" print(f\"Sample {i + 1}\")\n",
" print(f\"Prediction: {pred}\")\n",
" print(f\"Label: {label}\\n\")\n"
],
"metadata": {
"collapsed": true,
"id": "bVnn2zoxQFxc"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"saving the fine tuned model"
],
"metadata": {
"id": "G2lVyL663QgH"
}
},
{
"cell_type": "code",
"source": [
"model.save_pretrained(\"./banglish-to-bangla\")\n",
"tokenizer.save_pretrained(\"./banglish-to-bangla\")"
],
"metadata": {
"id": "c-4-GqLRZT-C",
"collapsed": true
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"taking custom input from the user to check"
],
"metadata": {
"id": "2nA9BzIT3Tmb"
}
},
{
"cell_type": "code",
"source": [
"import torch\n",
"\n",
"def translate_banglish_to_bangla(model, tokenizer, banglish_input):\n",
" inputs = tokenizer(banglish_input, return_tensors=\"pt\", padding=True, truncation=True, max_length=128)\n",
"\n",
" if torch.cuda.is_available():\n",
" inputs = {key: value.cuda() for key, value in inputs.items()}\n",
" model = model.cuda()\n",
"\n",
" translated_tokens = model.generate(**inputs, decoder_start_token_id=tokenizer.lang_code_to_id[\"bn_IN\"])\n",
" translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]\n",
"\n",
" return translated_text\n",
"\n",
"print(\"Enter your Banglish text (type 'exit' to quit):\")\n",
"while True:\n",
" banglish_text = input(\"Banglish: \")\n",
" if banglish_text.lower() == \"exit\":\n",
" break\n",
"\n",
"\n",
" translated_text = translate_banglish_to_bangla(model, tokenizer, banglish_text)\n",
" print(f\"Translated Bangla: {translated_text}\\n\")\n"
],
"metadata": {
"id": "uQ-HtJ7ledXW"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"exporting the model in .zip format"
],
"metadata": {
"id": "RoOeyvDa3b_y"
}
},
{
"cell_type": "code",
"source": [
"from google.colab import files\n",
"import zipfile\n",
"\n",
"def zipdir(path, ziph):\n",
" # ziph is zipfile handle\n",
" for root, dirs, files in os.walk(path):\n",
" for file in files:\n",
" ziph.write(os.path.join(root, file))\n",
"\n",
"import os\n",
"if not os.path.exists(\"./banglish-to-bangla\"):\n",
" print(\"Directory ./banglish-to-bangla not found. Please run the training code first.\")\n",
"else:\n",
" zipf = zipfile.ZipFile('banglish-to-bangla.zip', 'w', zipfile.ZIP_DEFLATED)\n",
" zipdir('./banglish-to-bangla', zipf)\n",
" zipf.close()\n",
" files.download('banglish-to-bangla.zip')"
],
"metadata": {
"id": "cP8HldTAaHqo"
},
"execution_count": null,
"outputs": []
}
]
} |