Upload kuet_preli_prblem_1 (1).ipynb
Browse files- kuet_preli_prblem_1 (1).ipynb +307 -0
kuet_preli_prblem_1 (1).ipynb
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU"
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"source": [
|
22 |
+
"installing required libraries\n"
|
23 |
+
],
|
24 |
+
"metadata": {
|
25 |
+
"id": "IhtNWaiM0V3D"
|
26 |
+
}
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"source": [
|
30 |
+
"!pip install datasets==2.14.5\n",
|
31 |
+
"!pip install transformers==4.28.0\n",
|
32 |
+
"!pip install protobuf==3.20.*"
|
33 |
+
],
|
34 |
+
"cell_type": "code",
|
35 |
+
"metadata": {
|
36 |
+
"collapsed": true,
|
37 |
+
"id": "cxFRfDCoLJzH"
|
38 |
+
},
|
39 |
+
"execution_count": null,
|
40 |
+
"outputs": []
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "markdown",
|
44 |
+
"source": [
|
45 |
+
"importing the dataset from hugging face and splitting it"
|
46 |
+
],
|
47 |
+
"metadata": {
|
48 |
+
"id": "W27dIock0c5K"
|
49 |
+
}
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "code",
|
53 |
+
"execution_count": null,
|
54 |
+
"metadata": {
|
55 |
+
"collapsed": true,
|
56 |
+
"id": "XR0cgTdaKWAC"
|
57 |
+
},
|
58 |
+
"outputs": [],
|
59 |
+
"source": [
|
60 |
+
"from datasets import load_dataset\n",
|
61 |
+
"\n",
|
62 |
+
"dataset = load_dataset(\"SKNahin/bengali-transliteration-data\")\n",
|
63 |
+
"\n",
|
64 |
+
"split_dataset = dataset['train'].train_test_split(test_size=0.2, seed=42)\n",
|
65 |
+
"\n",
|
66 |
+
"train_dataset = split_dataset['train']\n",
|
67 |
+
"val_dataset = split_dataset['test']\n",
|
68 |
+
"\n",
|
69 |
+
"print(f\"Training samples: {len(train_dataset)}, Validation samples: {len(val_dataset)}\")\n"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "markdown",
|
74 |
+
"source": [
|
75 |
+
"tokenizing the data and training the model"
|
76 |
+
],
|
77 |
+
"metadata": {
|
78 |
+
"id": "o75NKyHh0lD0"
|
79 |
+
}
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"source": [
|
84 |
+
"from transformers import MBartForConditionalGeneration, MBart50TokenizerFast, Trainer, TrainingArguments\n",
|
85 |
+
"import torch\n",
|
86 |
+
"\n",
|
87 |
+
"model_name = \"facebook/mbart-large-50\"\n",
|
88 |
+
"tokenizer = MBart50TokenizerFast.from_pretrained(model_name)\n",
|
89 |
+
"model = MBartForConditionalGeneration.from_pretrained(model_name)\n",
|
90 |
+
"\n",
|
91 |
+
"\n",
|
92 |
+
"tokenizer.src_lang = \"en_XX\"\n",
|
93 |
+
"tokenizer.tgt_lang = \"bn_IN\"\n",
|
94 |
+
"\n",
|
95 |
+
"\n",
|
96 |
+
"def preprocess(batch):\n",
|
97 |
+
" inputs = tokenizer(batch[\"rm\"], max_length=128, truncation=True, padding=\"max_length\")\n",
|
98 |
+
" targets = tokenizer(batch[\"bn\"], max_length=128, truncation=True, padding=\"max_length\")\n",
|
99 |
+
" inputs[\"labels\"] = targets[\"input_ids\"]\n",
|
100 |
+
" return inputs\n",
|
101 |
+
"\n",
|
102 |
+
"\n",
|
103 |
+
"train_dataset = train_dataset.map(preprocess, batched=True)\n",
|
104 |
+
"val_dataset = val_dataset.map(preprocess, batched=True)\n",
|
105 |
+
"\n",
|
106 |
+
"\n",
|
107 |
+
"train_dataset.set_format(type=\"torch\", columns=[\"input_ids\", \"attention_mask\", \"labels\"])\n",
|
108 |
+
"val_dataset.set_format(type=\"torch\", columns=[\"input_ids\", \"attention_mask\", \"labels\"])\n",
|
109 |
+
"\n",
|
110 |
+
"\n",
|
111 |
+
"training_args = TrainingArguments(\n",
|
112 |
+
" output_dir=\"./mbart_results\",\n",
|
113 |
+
" evaluation_strategy=\"epoch\",\n",
|
114 |
+
" learning_rate=3e-5,\n",
|
115 |
+
" per_device_train_batch_size=2,\n",
|
116 |
+
" per_device_eval_batch_size=2,\n",
|
117 |
+
" num_train_epochs=5,\n",
|
118 |
+
" weight_decay=0.01,\n",
|
119 |
+
" save_total_limit=2,\n",
|
120 |
+
" logging_dir=\"./mbart_logs\",\n",
|
121 |
+
" logging_steps=10,\n",
|
122 |
+
" save_steps=500,\n",
|
123 |
+
" fp16=torch.cuda.is_available(),\n",
|
124 |
+
")\n",
|
125 |
+
"\n",
|
126 |
+
"trainer = Trainer(\n",
|
127 |
+
" model=model,\n",
|
128 |
+
" args=training_args,\n",
|
129 |
+
" train_dataset=train_dataset,\n",
|
130 |
+
" eval_dataset=val_dataset,\n",
|
131 |
+
" tokenizer=tokenizer,\n",
|
132 |
+
")\n",
|
133 |
+
"\n",
|
134 |
+
"trainer.train()\n"
|
135 |
+
],
|
136 |
+
"metadata": {
|
137 |
+
"colab": {
|
138 |
+
"base_uri": "https://localhost:8080/",
|
139 |
+
"height": 339
|
140 |
+
},
|
141 |
+
"outputId": "0af79106-6873-472c-8d6a-6d385d2d151b",
|
142 |
+
"id": "06Q9XzHVg8v6",
|
143 |
+
"collapsed": true
|
144 |
+
},
|
145 |
+
"execution_count": 3,
|
146 |
+
"outputs": [
|
147 |
+
{
|
148 |
+
"output_type": "error",
|
149 |
+
"ename": "KeyboardInterrupt",
|
150 |
+
"evalue": "",
|
151 |
+
"traceback": [
|
152 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
153 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
154 |
+
"\u001b[0;32m<ipython-input-3-3ccb4aa8eee1>\u001b[0m in \u001b[0;36m<cell line: 54>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 52\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0;31m# Train the model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 54\u001b[0;31m \u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
155 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 1660\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_inner_training_loop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_train_batch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_find_batch_size\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1661\u001b[0m )\n\u001b[0;32m-> 1662\u001b[0;31m return inner_training_loop(\n\u001b[0m\u001b[1;32m 1663\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1664\u001b[0m \u001b[0mresume_from_checkpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mresume_from_checkpoint\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
156 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36m_inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 2004\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcallback_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_step_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2005\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2006\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_log_save_evaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtr_loss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrial\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepoch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mignore_keys_for_eval\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2007\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2008\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcallback_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_substep_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
157 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36m_maybe_log_save_evaluate\u001b[0;34m(self, tr_loss, model, trial, epoch, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 2289\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2290\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshould_save\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2291\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_save_checkpoint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrial\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmetrics\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmetrics\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2292\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcallback_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_save\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcontrol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2293\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
158 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36m_save_checkpoint\u001b[0;34m(self, model, trial, metrics)\u001b[0m\n\u001b[1;32m 2346\u001b[0m \u001b[0mrun_dir\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_output_dir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrial\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtrial\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2347\u001b[0m \u001b[0moutput_dir\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcheckpoint_folder\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2348\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_model\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_internal_call\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2349\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdeepspeed\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2350\u001b[0m \u001b[0;31m# under zero3 model file itself doesn't get saved since it's bogus! Unless deepspeed\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
159 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36msave_model\u001b[0;34m(self, output_dir, _internal_call)\u001b[0m\n\u001b[1;32m 2828\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2829\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshould_save\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2830\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_save\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput_dir\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2831\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2832\u001b[0m \u001b[0;31m# Push to the Hub when `save_model` is called by the user.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
160 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36m_save\u001b[0;34m(self, output_dir, state_dict)\u001b[0m\n\u001b[1;32m 2884\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstate_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mWEIGHTS_NAME\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2885\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2886\u001b[0;31m self.model.save_pretrained(\n\u001b[0m\u001b[1;32m 2887\u001b[0m \u001b[0moutput_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstate_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mstate_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msafe_serialization\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_safetensors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2888\u001b[0m )\n",
|
161 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py\u001b[0m in \u001b[0;36msave_pretrained\u001b[0;34m(self, save_directory, is_main_process, state_dict, save_function, push_to_hub, max_shard_size, safe_serialization, variant, **kwargs)\u001b[0m\n\u001b[1;32m 1841\u001b[0m \u001b[0msafe_save_file\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshard\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msave_directory\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshard_file\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmetadata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m\"format\"\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m\"pt\"\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1842\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1843\u001b[0;31m \u001b[0msave_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshard\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msave_directory\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshard_file\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1844\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1845\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
162 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/serialization.py\u001b[0m in \u001b[0;36msave\u001b[0;34m(obj, f, pickle_module, pickle_protocol, _use_new_zipfile_serialization, _disable_byteorder_record)\u001b[0m\n\u001b[1;32m 848\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m_use_new_zipfile_serialization\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 849\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0m_open_zipfile_writer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mopened_zipfile\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 850\u001b[0;31m _save(\n\u001b[0m\u001b[1;32m 851\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 852\u001b[0m \u001b[0mopened_zipfile\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
163 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/serialization.py\u001b[0m in \u001b[0;36m_save\u001b[0;34m(obj, zip_file, pickle_module, pickle_protocol, _disable_byteorder_record)\u001b[0m\n\u001b[1;32m 1112\u001b[0m \u001b[0mstorage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstorage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcpu\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1113\u001b[0m \u001b[0;31m# Now that it is on the CPU we can directly copy it into the zip file\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1114\u001b[0;31m \u001b[0mzip_file\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_record\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstorage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_bytes\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1115\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1116\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
164 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
165 |
+
]
|
166 |
+
}
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "markdown",
|
171 |
+
"source": [
|
172 |
+
"evaluating the model and generating predictions"
|
173 |
+
],
|
174 |
+
"metadata": {
|
175 |
+
"id": "N2KBMAZi2PwO"
|
176 |
+
}
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"source": [
|
181 |
+
"import torch\n",
|
182 |
+
"\n",
|
183 |
+
"sample = val_dataset.select(range(10))\n",
|
184 |
+
"inputs = sample[\"input_ids\"]\n",
|
185 |
+
"\n",
|
186 |
+
"if torch.cuda.is_available():\n",
|
187 |
+
" inputs = inputs.cuda()\n",
|
188 |
+
"\n",
|
189 |
+
"preds = model.generate(inputs)\n",
|
190 |
+
"\n",
|
191 |
+
"decoded_preds = [tokenizer.decode(pred, skip_special_tokens=True, clean_up_tokenization_spaces=True) for pred in preds]\n",
|
192 |
+
"decoded_labels = [tokenizer.decode(label, skip_special_tokens=True, clean_up_tokenization_spaces=True) for label in sample[\"labels\"]]\n",
|
193 |
+
"\n",
|
194 |
+
"for i, (pred, label) in enumerate(zip(decoded_preds, decoded_labels)):\n",
|
195 |
+
" print(f\"Sample {i + 1}\")\n",
|
196 |
+
" print(f\"Prediction: {pred}\")\n",
|
197 |
+
" print(f\"Label: {label}\\n\")\n"
|
198 |
+
],
|
199 |
+
"metadata": {
|
200 |
+
"collapsed": true,
|
201 |
+
"id": "bVnn2zoxQFxc"
|
202 |
+
},
|
203 |
+
"execution_count": null,
|
204 |
+
"outputs": []
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"cell_type": "markdown",
|
208 |
+
"source": [
|
209 |
+
"saving the fine tuned model"
|
210 |
+
],
|
211 |
+
"metadata": {
|
212 |
+
"id": "G2lVyL663QgH"
|
213 |
+
}
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"cell_type": "code",
|
217 |
+
"source": [
|
218 |
+
"model.save_pretrained(\"./banglish-to-bangla\")\n",
|
219 |
+
"tokenizer.save_pretrained(\"./banglish-to-bangla\")"
|
220 |
+
],
|
221 |
+
"metadata": {
|
222 |
+
"id": "c-4-GqLRZT-C",
|
223 |
+
"collapsed": true
|
224 |
+
},
|
225 |
+
"execution_count": null,
|
226 |
+
"outputs": []
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"cell_type": "markdown",
|
230 |
+
"source": [
|
231 |
+
"taking custom input from the user to check"
|
232 |
+
],
|
233 |
+
"metadata": {
|
234 |
+
"id": "2nA9BzIT3Tmb"
|
235 |
+
}
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"cell_type": "code",
|
239 |
+
"source": [
|
240 |
+
"import torch\n",
|
241 |
+
"\n",
|
242 |
+
"def translate_banglish_to_bangla(model, tokenizer, banglish_input):\n",
|
243 |
+
" inputs = tokenizer(banglish_input, return_tensors=\"pt\", padding=True, truncation=True, max_length=128)\n",
|
244 |
+
"\n",
|
245 |
+
" if torch.cuda.is_available():\n",
|
246 |
+
" inputs = {key: value.cuda() for key, value in inputs.items()}\n",
|
247 |
+
" model = model.cuda()\n",
|
248 |
+
"\n",
|
249 |
+
" translated_tokens = model.generate(**inputs, decoder_start_token_id=tokenizer.lang_code_to_id[\"bn_IN\"])\n",
|
250 |
+
" translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]\n",
|
251 |
+
"\n",
|
252 |
+
" return translated_text\n",
|
253 |
+
"\n",
|
254 |
+
"print(\"Enter your Banglish text (type 'exit' to quit):\")\n",
|
255 |
+
"while True:\n",
|
256 |
+
" banglish_text = input(\"Banglish: \")\n",
|
257 |
+
" if banglish_text.lower() == \"exit\":\n",
|
258 |
+
" break\n",
|
259 |
+
"\n",
|
260 |
+
"\n",
|
261 |
+
" translated_text = translate_banglish_to_bangla(model, tokenizer, banglish_text)\n",
|
262 |
+
" print(f\"Translated Bangla: {translated_text}\\n\")\n"
|
263 |
+
],
|
264 |
+
"metadata": {
|
265 |
+
"id": "uQ-HtJ7ledXW"
|
266 |
+
},
|
267 |
+
"execution_count": null,
|
268 |
+
"outputs": []
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "markdown",
|
272 |
+
"source": [
|
273 |
+
"exporting the model in .zip format"
|
274 |
+
],
|
275 |
+
"metadata": {
|
276 |
+
"id": "RoOeyvDa3b_y"
|
277 |
+
}
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "code",
|
281 |
+
"source": [
|
282 |
+
"from google.colab import files\n",
|
283 |
+
"import zipfile\n",
|
284 |
+
"\n",
|
285 |
+
"def zipdir(path, ziph):\n",
|
286 |
+
" # ziph is zipfile handle\n",
|
287 |
+
" for root, dirs, files in os.walk(path):\n",
|
288 |
+
" for file in files:\n",
|
289 |
+
" ziph.write(os.path.join(root, file))\n",
|
290 |
+
"\n",
|
291 |
+
"import os\n",
|
292 |
+
"if not os.path.exists(\"./banglish-to-bangla\"):\n",
|
293 |
+
" print(\"Directory ./banglish-to-bangla not found. Please run the training code first.\")\n",
|
294 |
+
"else:\n",
|
295 |
+
" zipf = zipfile.ZipFile('banglish-to-bangla.zip', 'w', zipfile.ZIP_DEFLATED)\n",
|
296 |
+
" zipdir('./banglish-to-bangla', zipf)\n",
|
297 |
+
" zipf.close()\n",
|
298 |
+
" files.download('banglish-to-bangla.zip')"
|
299 |
+
],
|
300 |
+
"metadata": {
|
301 |
+
"id": "cP8HldTAaHqo"
|
302 |
+
},
|
303 |
+
"execution_count": null,
|
304 |
+
"outputs": []
|
305 |
+
}
|
306 |
+
]
|
307 |
+
}
|