|
# tensorboardX |
|
|
|
[](https://travis-ci.org/lanpa/tensorboardX) |
|
[](https://badge.fury.io/py/tensorboardX) |
|
[](https://bigquery.cloud.google.com/savedquery/966219917372:edb59a0d70c54eb687ab2a9417a778ee) |
|
[](https://tensorboardx.readthedocs.io/en/latest/?badge=latest) |
|
[](https://codecov.io/gh/lanpa/tensorboardX/) |
|
|
|
Write TensorBoard events with simple function call. |
|
|
|
* Support `scalar`, `image`, `figure`, `histogram`, `audio`, `text`, `graph`, `onnx_graph`, `embedding`, `pr_curve`, `mesh`, `hyper-parameters` |
|
and `video` summaries. |
|
|
|
* requirement for `demo_graph.py` is tensorboardX>=1.6 and pytorch>=1.1 |
|
|
|
* [FAQ](https://github.com/lanpa/tensorboardX/wiki) |
|
|
|
## Install |
|
|
|
Tested on anaconda2 / anaconda3, with PyTorch 1.1.0 / torchvision 0.3 / tensorboard 1.13.0 |
|
|
|
`pip install tensorboardX` |
|
|
|
or build from source: |
|
|
|
`git clone https://github.com/lanpa/tensorboardX && cd tensorboardX && python setup.py install` |
|
|
|
You can optionally install [`crc32c`](https://github.com/ICRAR/crc32c) to speed up saving a large amount of data. |
|
|
|
|
|
## Example |
|
|
|
* Run the demo script: `python examples/demo.py` |
|
* Use TensorBoard with `tensorboard --logdir runs` (needs to install TensorFlow) |
|
|
|
```python |
|
# demo.py |
|
|
|
import torch |
|
import torchvision.utils as vutils |
|
import numpy as np |
|
import torchvision.models as models |
|
from torchvision import datasets |
|
from tensorboardX import SummaryWriter |
|
|
|
resnet18 = models.resnet18(False) |
|
writer = SummaryWriter() |
|
sample_rate = 44100 |
|
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440] |
|
|
|
for n_iter in range(100): |
|
|
|
dummy_s1 = torch.rand(1) |
|
dummy_s2 = torch.rand(1) |
|
# data grouping by `slash` |
|
writer.add_scalar('data/scalar1', dummy_s1[0], n_iter) |
|
writer.add_scalar('data/scalar2', dummy_s2[0], n_iter) |
|
|
|
writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter), |
|
'xcosx': n_iter * np.cos(n_iter), |
|
'arctanx': np.arctan(n_iter)}, n_iter) |
|
|
|
dummy_img = torch.rand(32, 3, 64, 64) # output from network |
|
if n_iter % 10 == 0: |
|
x = vutils.make_grid(dummy_img, normalize=True, scale_each=True) |
|
writer.add_image('Image', x, n_iter) |
|
|
|
dummy_audio = torch.zeros(sample_rate * 2) |
|
for i in range(x.size(0)): |
|
# amplitude of sound should in [-1, 1] |
|
dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate)) |
|
writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate) |
|
|
|
writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter) |
|
|
|
for name, param in resnet18.named_parameters(): |
|
writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter) |
|
|
|
# needs tensorboard 0.4RC or later |
|
writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter) |
|
|
|
dataset = datasets.MNIST('mnist', train=False, download=True) |
|
images = dataset.test_data[:100].float() |
|
label = dataset.test_labels[:100] |
|
|
|
features = images.view(100, 784) |
|
writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1)) |
|
|
|
# export scalar data to JSON for external processing |
|
writer.export_scalars_to_json("./all_scalars.json") |
|
writer.close() |
|
``` |
|
|
|
## Screenshots |
|
|
|
<img src="screenshots/Demo.gif"> |
|
|
|
## Tweaks |
|
|
|
To add more ticks for the slider (show more image history), check https://github.com/lanpa/tensorboardX/issues/44 or |
|
https://github.com/tensorflow/tensorboard/pull/1138 |
|
|
|
## Reference |
|
|
|
* [TeamHG-Memex/tensorboard_logger](https://github.com/TeamHG-Memex/tensorboard_logger) |
|
* [dmlc/tensorboard](https://github.com/dmlc/tensorboard) |
|
|