Finetuned Whisper small for darija speech translation
This model is a fine-tuned version of openai/whisper-small on the Darija-C dataset. It achieves the following results on the evaluation set:
- Loss: 0.0000
- Bleu: 0.7440
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu |
---|---|---|---|---|
4.1244 | 0.625 | 5 | 4.0913 | 0.0 |
4.1401 | 1.25 | 10 | 3.8806 | 0.0 |
3.5438 | 1.875 | 15 | 3.0904 | 0.0 |
2.7946 | 2.5 | 20 | 2.2453 | 0.0023 |
2.1793 | 3.125 | 25 | 1.7106 | 0.0083 |
1.6133 | 3.75 | 30 | 1.2200 | 0.0310 |
1.1125 | 4.375 | 35 | 0.8124 | 0.1554 |
0.8674 | 5.0 | 40 | 0.4519 | 0.4140 |
0.4645 | 5.625 | 45 | 0.2318 | 0.5646 |
0.2348 | 6.25 | 50 | 0.1173 | 0.6654 |
0.1596 | 6.875 | 55 | 0.0513 | 0.7341 |
0.0745 | 7.5 | 60 | 0.0323 | 0.7247 |
0.0447 | 8.125 | 65 | 0.0136 | 0.7440 |
0.014 | 8.75 | 70 | 0.0113 | 0.7284 |
0.0185 | 9.375 | 75 | 0.0107 | 0.7352 |
0.0638 | 10.0 | 80 | 0.0421 | 0.7070 |
0.0472 | 10.625 | 85 | 0.0503 | 0.6970 |
0.0681 | 11.25 | 90 | 0.0879 | 0.6954 |
0.1465 | 11.875 | 95 | 0.0407 | 0.6819 |
0.0483 | 12.5 | 100 | 0.0835 | 0.6678 |
0.1844 | 13.125 | 105 | 0.0661 | 0.6744 |
0.0737 | 13.75 | 110 | 0.1486 | 0.6494 |
0.1454 | 14.375 | 115 | 0.1018 | 0.6439 |
0.1203 | 15.0 | 120 | 0.0444 | 0.7143 |
0.0858 | 15.625 | 125 | 0.0148 | 0.7320 |
0.0463 | 16.25 | 130 | 0.0726 | 0.6406 |
0.1464 | 16.875 | 135 | 0.0586 | 0.6699 |
0.0938 | 17.5 | 140 | 0.0447 | 0.6639 |
0.1116 | 18.125 | 145 | 0.0737 | 0.6801 |
0.1031 | 18.75 | 150 | 0.0906 | 0.6794 |
0.1601 | 19.375 | 155 | 0.1172 | 0.6540 |
0.1957 | 20.0 | 160 | 0.0271 | 0.7095 |
0.0043 | 20.625 | 165 | 0.0491 | 0.6874 |
0.1013 | 21.25 | 170 | 0.0221 | 0.7341 |
0.0506 | 21.875 | 175 | 0.0313 | 0.6938 |
0.0545 | 22.5 | 180 | 0.0664 | 0.6533 |
0.1434 | 23.125 | 185 | 0.0586 | 0.6346 |
0.0891 | 23.75 | 190 | 0.0947 | 0.6823 |
0.1784 | 24.375 | 195 | 0.1534 | 0.6343 |
0.3143 | 25.0 | 200 | 0.1054 | 0.6431 |
0.182 | 25.625 | 205 | 0.0546 | 0.6610 |
0.0698 | 26.25 | 210 | 0.0816 | 0.6662 |
0.1513 | 26.875 | 215 | 0.0420 | 0.7162 |
0.0759 | 27.5 | 220 | 0.0995 | 0.6411 |
0.191 | 28.125 | 225 | 0.0334 | 0.7012 |
0.0429 | 28.75 | 230 | 0.0748 | 0.6273 |
0.1608 | 29.375 | 235 | 0.1665 | 0.5937 |
0.2917 | 30.0 | 240 | 0.1436 | 0.6353 |
0.2379 | 30.625 | 245 | 0.0348 | 0.6940 |
0.0835 | 31.25 | 250 | 0.0238 | 0.7153 |
0.0293 | 31.875 | 255 | 0.0581 | 0.6983 |
0.0946 | 32.5 | 260 | 0.0471 | 0.7104 |
0.1223 | 33.125 | 265 | 0.0660 | 0.7389 |
0.1151 | 33.75 | 270 | 0.0598 | 0.7160 |
0.1367 | 34.375 | 275 | 0.1139 | 0.6796 |
0.1004 | 35.0 | 280 | 0.0553 | 0.7200 |
0.0921 | 35.625 | 285 | 0.0396 | 0.6818 |
0.0523 | 36.25 | 290 | 0.0691 | 0.6757 |
0.0866 | 36.875 | 295 | 0.0505 | 0.7211 |
0.1391 | 37.5 | 300 | 0.0480 | 0.6985 |
0.0674 | 38.125 | 305 | 0.0701 | 0.6544 |
0.058 | 38.75 | 310 | 0.0546 | 0.7081 |
0.1008 | 39.375 | 315 | 0.0587 | 0.6832 |
0.0989 | 40.0 | 320 | 0.0435 | 0.6986 |
0.053 | 40.625 | 325 | 0.0094 | 0.7107 |
0.0164 | 41.25 | 330 | 0.0218 | 0.7248 |
0.0541 | 41.875 | 335 | 0.0036 | 0.7274 |
0.0086 | 42.5 | 340 | 0.0126 | 0.7213 |
0.0288 | 43.125 | 345 | 0.0004 | 0.7440 |
0.0006 | 43.75 | 350 | 0.0007 | 0.7440 |
0.0008 | 44.375 | 355 | 0.0201 | 0.7187 |
0.0334 | 45.0 | 360 | 0.0220 | 0.7380 |
0.0401 | 45.625 | 365 | 0.0002 | 0.7440 |
0.0003 | 46.25 | 370 | 0.0375 | 0.7178 |
0.0575 | 46.875 | 375 | 0.0009 | 0.7440 |
0.0011 | 47.5 | 380 | 0.0088 | 0.7250 |
0.1052 | 48.125 | 385 | 0.0353 | 0.7248 |
0.0138 | 48.75 | 390 | 0.0002 | 0.7440 |
0.0003 | 49.375 | 395 | 0.0003 | 0.7440 |
0.0007 | 50.0 | 400 | 0.0001 | 0.7440 |
0.0001 | 50.625 | 405 | 0.0037 | 0.7415 |
0.0001 | 51.25 | 410 | 0.0158 | 0.7415 |
0.0387 | 51.875 | 415 | 0.0001 | 0.7440 |
0.0001 | 52.5 | 420 | 0.0008 | 0.7440 |
0.0025 | 53.125 | 425 | 0.0001 | 0.7440 |
0.0001 | 53.75 | 430 | 0.0001 | 0.7440 |
0.0001 | 54.375 | 435 | 0.0001 | 0.7440 |
0.0001 | 55.0 | 440 | 0.0001 | 0.7440 |
0.0 | 55.625 | 445 | 0.0000 | 0.7440 |
0.0 | 56.25 | 450 | 0.0000 | 0.7440 |
0.0 | 56.875 | 455 | 0.0000 | 0.7440 |
0.0 | 57.5 | 460 | 0.0000 | 0.7440 |
0.0 | 58.125 | 465 | 0.0000 | 0.7440 |
0.0 | 58.75 | 470 | 0.0000 | 0.7440 |
0.0 | 59.375 | 475 | 0.0000 | 0.7440 |
0.0 | 60.0 | 480 | 0.0000 | 0.7440 |
0.0 | 60.625 | 485 | 0.0000 | 0.7440 |
0.0 | 61.25 | 490 | 0.0000 | 0.7440 |
0.0 | 61.875 | 495 | 0.0000 | 0.7440 |
0.0 | 62.5 | 500 | 0.0000 | 0.7440 |
0.0 | 63.125 | 505 | 0.0000 | 0.7440 |
0.0 | 63.75 | 510 | 0.0000 | 0.7440 |
0.0 | 64.375 | 515 | 0.0000 | 0.7440 |
0.0 | 65.0 | 520 | 0.0000 | 0.7440 |
0.0 | 65.625 | 525 | 0.0000 | 0.7440 |
0.0 | 66.25 | 530 | 0.0000 | 0.7440 |
0.0 | 66.875 | 535 | 0.0000 | 0.7440 |
0.0 | 67.5 | 540 | 0.0000 | 0.7440 |
0.0 | 68.125 | 545 | 0.0000 | 0.7440 |
0.0 | 68.75 | 550 | 0.0000 | 0.7440 |
0.0 | 69.375 | 555 | 0.0000 | 0.7440 |
0.0 | 70.0 | 560 | 0.0000 | 0.7440 |
0.0 | 70.625 | 565 | 0.0000 | 0.7440 |
0.0 | 71.25 | 570 | 0.0000 | 0.7440 |
0.0 | 71.875 | 575 | 0.0000 | 0.7440 |
0.0 | 72.5 | 580 | 0.0000 | 0.7440 |
0.0 | 73.125 | 585 | 0.0000 | 0.7440 |
0.0 | 73.75 | 590 | 0.0000 | 0.7440 |
0.0 | 74.375 | 595 | 0.0000 | 0.7440 |
0.0 | 75.0 | 600 | 0.0000 | 0.7440 |
0.0 | 75.625 | 605 | 0.0000 | 0.7440 |
0.0 | 76.25 | 610 | 0.0000 | 0.7440 |
0.0 | 76.875 | 615 | 0.0000 | 0.7440 |
0.0 | 77.5 | 620 | 0.0000 | 0.7440 |
0.0 | 78.125 | 625 | 0.0000 | 0.7440 |
0.0 | 78.75 | 630 | 0.0000 | 0.7440 |
0.0 | 79.375 | 635 | 0.0000 | 0.7440 |
0.0 | 80.0 | 640 | 0.0000 | 0.7440 |
0.0 | 80.625 | 645 | 0.0000 | 0.7440 |
0.0 | 81.25 | 650 | 0.0000 | 0.7440 |
0.0 | 81.875 | 655 | 0.0000 | 0.7440 |
0.0 | 82.5 | 660 | 0.0000 | 0.7440 |
0.0 | 83.125 | 665 | 0.0000 | 0.7440 |
0.0 | 83.75 | 670 | 0.0000 | 0.7440 |
0.0 | 84.375 | 675 | 0.0000 | 0.7440 |
0.0 | 85.0 | 680 | 0.0000 | 0.7440 |
0.0 | 85.625 | 685 | 0.0000 | 0.7440 |
0.0 | 86.25 | 690 | 0.0000 | 0.7440 |
0.0 | 86.875 | 695 | 0.0000 | 0.7440 |
0.0 | 87.5 | 700 | 0.0000 | 0.7440 |
0.0 | 88.125 | 705 | 0.0000 | 0.7440 |
0.0 | 88.75 | 710 | 0.0000 | 0.7440 |
0.0 | 89.375 | 715 | 0.0000 | 0.7440 |
0.0 | 90.0 | 720 | 0.0000 | 0.7440 |
0.0 | 90.625 | 725 | 0.0000 | 0.7440 |
0.0 | 91.25 | 730 | 0.0000 | 0.7440 |
0.0 | 91.875 | 735 | 0.0000 | 0.7440 |
0.0 | 92.5 | 740 | 0.0000 | 0.7440 |
0.0 | 93.125 | 745 | 0.0000 | 0.7440 |
0.0 | 93.75 | 750 | 0.0000 | 0.7440 |
0.0 | 94.375 | 755 | 0.0000 | 0.7440 |
0.0 | 95.0 | 760 | 0.0000 | 0.7440 |
0.0 | 95.625 | 765 | 0.0000 | 0.7440 |
0.0 | 96.25 | 770 | 0.0000 | 0.7440 |
0.0 | 96.875 | 775 | 0.0000 | 0.7440 |
0.0 | 97.5 | 780 | 0.0000 | 0.7440 |
0.0 | 98.125 | 785 | 0.0000 | 0.7440 |
0.0 | 98.75 | 790 | 0.0000 | 0.7440 |
0.0 | 99.375 | 795 | 0.0000 | 0.7440 |
0.0 | 100.0 | 800 | 0.0000 | 0.7440 |
0.0 | 100.625 | 805 | 0.0000 | 0.7440 |
0.0 | 101.25 | 810 | 0.0000 | 0.7440 |
0.0 | 101.875 | 815 | 0.0000 | 0.7440 |
0.0 | 102.5 | 820 | 0.0000 | 0.7440 |
0.0 | 103.125 | 825 | 0.0000 | 0.7440 |
0.0 | 103.75 | 830 | 0.0000 | 0.7440 |
0.0 | 104.375 | 835 | 0.0000 | 0.7440 |
0.0 | 105.0 | 840 | 0.0000 | 0.7440 |
0.0 | 105.625 | 845 | 0.0000 | 0.7440 |
0.0 | 106.25 | 850 | 0.0000 | 0.7440 |
0.0 | 106.875 | 855 | 0.0000 | 0.7440 |
0.0 | 107.5 | 860 | 0.0000 | 0.7440 |
0.0 | 108.125 | 865 | 0.0000 | 0.7440 |
0.0 | 108.75 | 870 | 0.0000 | 0.7440 |
0.0 | 109.375 | 875 | 0.0000 | 0.7440 |
0.0 | 110.0 | 880 | 0.0000 | 0.7440 |
0.0 | 110.625 | 885 | 0.0000 | 0.7440 |
0.0 | 111.25 | 890 | 0.0000 | 0.7440 |
0.0 | 111.875 | 895 | 0.0000 | 0.7440 |
0.0 | 112.5 | 900 | 0.0000 | 0.7440 |
0.0 | 113.125 | 905 | 0.0000 | 0.7440 |
0.0 | 113.75 | 910 | 0.0000 | 0.7440 |
0.0 | 114.375 | 915 | 0.0000 | 0.7440 |
0.0 | 115.0 | 920 | 0.0000 | 0.7440 |
0.0 | 115.625 | 925 | 0.0000 | 0.7440 |
0.0 | 116.25 | 930 | 0.0000 | 0.7440 |
0.0 | 116.875 | 935 | 0.0000 | 0.7440 |
0.0 | 117.5 | 940 | 0.0000 | 0.7440 |
0.0 | 118.125 | 945 | 0.0000 | 0.7440 |
0.0 | 118.75 | 950 | 0.0000 | 0.7440 |
0.0 | 119.375 | 955 | 0.0000 | 0.7440 |
0.0 | 120.0 | 960 | 0.0000 | 0.7440 |
0.0 | 120.625 | 965 | 0.0000 | 0.7440 |
0.0 | 121.25 | 970 | 0.0000 | 0.7440 |
0.0 | 121.875 | 975 | 0.0000 | 0.7440 |
0.0 | 122.5 | 980 | 0.0000 | 0.7440 |
0.0 | 123.125 | 985 | 0.0000 | 0.7440 |
0.0 | 123.75 | 990 | 0.0000 | 0.7440 |
0.0 | 124.375 | 995 | 0.0000 | 0.7440 |
0.0 | 125.0 | 1000 | 0.0000 | 0.7440 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 2.19.2
- Tokenizers 0.21.0
- Downloads last month
- 76
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Marialab/finetuned-whisper-small-1000-step
Base model
openai/whisper-small