metadata
library_name: transformers
language:
- ar
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- RetaSy/quranic_audio_dataset
metrics:
- wer
model-index:
- name: Whisper Base Ar - GPTeam
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: quranic_audio_dataset
type: RetaSy/quranic_audio_dataset
args: 'config: ar, split: test'
metrics:
- name: Wer
type: wer
value: 29.20499342969777
Whisper Base Ar - GPTeam
This model is a fine-tuned version of openai/whisper-base on the quranic_audio_dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.0527
- Wer: 29.2050
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0771 | 2.9240 | 1000 | 0.0722 | 34.2806 |
0.0183 | 5.8480 | 2000 | 0.0553 | 30.8476 |
0.0062 | 8.7719 | 3000 | 0.0527 | 30.7654 |
0.0023 | 11.6959 | 4000 | 0.0527 | 29.2050 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0