flydust's picture
End of training
de82fb5 verified
|
raw
history blame
3.81 kB
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Llama-3.1-8B-Magpie-SFT-GMix-550K
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: meta-llama/Meta-Llama-3.1-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
chat_template: llama3
load_in_8bit: false
load_in_4bit: false
strict: false
main_process_port: 0
datasets:
- path: flydust/Magpie-Llama-3-70B-300K-Gemma2-9B
type: sharegpt
conversation: llama3
- path: flydust/Magpie-Reasoning-150K-Gemma2-9B
type: sharegpt
conversation: llama3
- path: flydust/Magpie-100k-Gemma2-9B
type: sharegpt
conversation: llama3
dataset_prepared_path: /data/zhangchen_xu/last_run_prepared
val_set_size: 0.001
output_dir: /data/zhangchen_xu/axolotl_out/Llama-3.1-8B-SFT-GMix-550K
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: SynDa
wandb_entity:
wandb_watch:
wandb_name: Llama-3.1-8B-Mix-SFT-GMix-550K
wandb_log_model:
hub_model_id: Magpie-Align/Llama-3.1-8B-Magpie-SFT-GMix-550K
gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 5
eval_table_size:
saves_per_epoch:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# Llama-3.1-8B-Magpie-SFT-GMix-550K
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4544
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 51
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9311 | 0.0038 | 1 | 0.9847 |
| 0.561 | 0.2015 | 53 | 0.5765 |
| 0.4843 | 0.4030 | 106 | 0.5039 |
| 0.4608 | 0.6045 | 159 | 0.4814 |
| 0.4454 | 0.8060 | 212 | 0.4678 |
| 0.4403 | 1.0075 | 265 | 0.4596 |
| 0.3965 | 1.1938 | 318 | 0.4574 |
| 0.3952 | 1.3953 | 371 | 0.4554 |
| 0.3962 | 1.5968 | 424 | 0.4547 |
| 0.3948 | 1.7983 | 477 | 0.4544 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1