|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import random |
|
|
|
import pytest |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
|
|
from llamafactory.extras.constants import IGNORE_INDEX |
|
from llamafactory.train.test_utils import load_train_dataset |
|
|
|
|
|
DEMO_DATA = os.environ.get("DEMO_DATA", "llamafactory/demo_data") |
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") |
|
|
|
TINY_DATA = os.environ.get("TINY_DATA", "llamafactory/tiny-supervised-dataset") |
|
|
|
TRAIN_ARGS = { |
|
"model_name_or_path": TINY_LLAMA, |
|
"stage": "sft", |
|
"do_train": True, |
|
"finetuning_type": "full", |
|
"template": "llama3", |
|
"cutoff_len": 8192, |
|
"overwrite_cache": True, |
|
"output_dir": "dummy_dir", |
|
"overwrite_output_dir": True, |
|
"fp16": True, |
|
} |
|
|
|
|
|
@pytest.mark.parametrize("num_samples", [16]) |
|
def test_supervised_single_turn(num_samples: int): |
|
train_dataset = load_train_dataset(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS) |
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) |
|
original_data = load_dataset(TINY_DATA, split="train") |
|
indexes = random.choices(range(len(original_data)), k=num_samples) |
|
for index in indexes: |
|
prompt = original_data["instruction"][index] |
|
if original_data["input"][index]: |
|
prompt += "\n" + original_data["input"][index] |
|
|
|
messages = [ |
|
{"role": "user", "content": prompt}, |
|
{"role": "assistant", "content": original_data["output"][index]}, |
|
] |
|
ref_input_ids = ref_tokenizer.apply_chat_template(messages) |
|
assert train_dataset["input_ids"][index] == ref_input_ids |
|
|
|
|
|
@pytest.mark.parametrize("num_samples", [8]) |
|
def test_supervised_multi_turn(num_samples: int): |
|
train_dataset = load_train_dataset(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS) |
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) |
|
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train") |
|
indexes = random.choices(range(len(original_data)), k=num_samples) |
|
for index in indexes: |
|
ref_input_ids = ref_tokenizer.apply_chat_template(original_data["messages"][index]) |
|
assert train_dataset["input_ids"][index] == ref_input_ids |
|
|
|
|
|
@pytest.mark.parametrize("num_samples", [4]) |
|
def test_supervised_train_on_prompt(num_samples: int): |
|
train_dataset = load_train_dataset( |
|
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", train_on_prompt=True, **TRAIN_ARGS |
|
) |
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) |
|
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train") |
|
indexes = random.choices(range(len(original_data)), k=num_samples) |
|
for index in indexes: |
|
ref_ids = ref_tokenizer.apply_chat_template(original_data["messages"][index]) |
|
assert train_dataset["input_ids"][index] == ref_ids |
|
assert train_dataset["labels"][index] == ref_ids |
|
|
|
|
|
@pytest.mark.parametrize("num_samples", [4]) |
|
def test_supervised_mask_history(num_samples: int): |
|
train_dataset = load_train_dataset( |
|
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", mask_history=True, **TRAIN_ARGS |
|
) |
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) |
|
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train") |
|
indexes = random.choices(range(len(original_data)), k=num_samples) |
|
for index in indexes: |
|
messages = original_data["messages"][index] |
|
ref_input_ids = ref_tokenizer.apply_chat_template(messages) |
|
prompt_len = len(ref_tokenizer.apply_chat_template(messages[:-1], add_generation_prompt=True)) |
|
ref_label_ids = [IGNORE_INDEX] * prompt_len + ref_input_ids[prompt_len:] |
|
assert train_dataset["input_ids"][index] == ref_input_ids |
|
assert train_dataset["labels"][index] == ref_label_ids |
|
|