# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import random import pytest from datasets import load_dataset from transformers import AutoTokenizer from llamafactory.extras.constants import IGNORE_INDEX from llamafactory.train.test_utils import load_train_dataset DEMO_DATA = os.environ.get("DEMO_DATA", "llamafactory/demo_data") TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") TINY_DATA = os.environ.get("TINY_DATA", "llamafactory/tiny-supervised-dataset") TRAIN_ARGS = { "model_name_or_path": TINY_LLAMA, "stage": "sft", "do_train": True, "finetuning_type": "full", "template": "llama3", "cutoff_len": 8192, "overwrite_cache": True, "output_dir": "dummy_dir", "overwrite_output_dir": True, "fp16": True, } @pytest.mark.parametrize("num_samples", [16]) def test_supervised_single_turn(num_samples: int): train_dataset = load_train_dataset(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS) ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) original_data = load_dataset(TINY_DATA, split="train") indexes = random.choices(range(len(original_data)), k=num_samples) for index in indexes: prompt = original_data["instruction"][index] if original_data["input"][index]: prompt += "\n" + original_data["input"][index] messages = [ {"role": "user", "content": prompt}, {"role": "assistant", "content": original_data["output"][index]}, ] ref_input_ids = ref_tokenizer.apply_chat_template(messages) assert train_dataset["input_ids"][index] == ref_input_ids @pytest.mark.parametrize("num_samples", [8]) def test_supervised_multi_turn(num_samples: int): train_dataset = load_train_dataset(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS) ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) original_data = load_dataset(DEMO_DATA, name="system_chat", split="train") indexes = random.choices(range(len(original_data)), k=num_samples) for index in indexes: ref_input_ids = ref_tokenizer.apply_chat_template(original_data["messages"][index]) assert train_dataset["input_ids"][index] == ref_input_ids @pytest.mark.parametrize("num_samples", [4]) def test_supervised_train_on_prompt(num_samples: int): train_dataset = load_train_dataset( dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", train_on_prompt=True, **TRAIN_ARGS ) ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) original_data = load_dataset(DEMO_DATA, name="system_chat", split="train") indexes = random.choices(range(len(original_data)), k=num_samples) for index in indexes: ref_ids = ref_tokenizer.apply_chat_template(original_data["messages"][index]) assert train_dataset["input_ids"][index] == ref_ids assert train_dataset["labels"][index] == ref_ids @pytest.mark.parametrize("num_samples", [4]) def test_supervised_mask_history(num_samples: int): train_dataset = load_train_dataset( dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", mask_history=True, **TRAIN_ARGS ) ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) original_data = load_dataset(DEMO_DATA, name="system_chat", split="train") indexes = random.choices(range(len(original_data)), k=num_samples) for index in indexes: messages = original_data["messages"][index] ref_input_ids = ref_tokenizer.apply_chat_template(messages) prompt_len = len(ref_tokenizer.apply_chat_template(messages[:-1], add_generation_prompt=True)) ref_label_ids = [IGNORE_INDEX] * prompt_len + ref_input_ids[prompt_len:] assert train_dataset["input_ids"][index] == ref_input_ids assert train_dataset["labels"][index] == ref_label_ids