MISHANM/Odia_text_generation_eng_to_odia_Llama3_8B_instruct

This model is fine-tuned for the Odia language, capable of answering queries and translating text from English to Odia. It leverages advanced natural language processing techniques to provide accurate and context-aware responses.

Model Details

This model is based on meta-llama/Llama-3-8B-Instruct and has been LoRA finetuned on Odia datasets.

Training Details

The model is trained on approx 52K instruction samples.

  1. GPUs: 4*AMD Radeon™ PRO V620
  2. train_loss': 0.3483432317272571,
  3. epoch': 10.0

Inference with HuggingFace


import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Set the device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Odia_text_generation_eng_to_odia_Llama3_8B_instruct"
model = AutoModelForCausalLM.from_pretrained(model_path)

# Wrap the model with DataParallel if multiple GPUs are available
if torch.cuda.device_count() > 1:
   print(f"Using {torch.cuda.device_count()} GPUs")
   model = torch.nn.DataParallel(model)

# Move the model to the appropriate device
model.to(device)

tokenizer = AutoTokenizer.from_pretrained(model_path)

# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
   # Format the prompt according to the chat template
   messages = [
       {
           "role": "system",
           "content": "You are a odia language expert and linguist, with same knowledge give response in odia language.",
       },
       {"role": "user", "content": prompt}
   ]

   # Apply the chat template
   formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"

   # Tokenize and generate output
   inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
   output = model.module.generate(  # Use model.module for DataParallel
       **inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
   )
   return tokenizer.decode(output[0], skip_special_tokens=True)

# Example usage
prompt = """Give a poem on LLM ."""
translated_text = generate_text(prompt)
print(translated_text)

Citation Information

@misc{MISHANM/Odia_text_generation_eng_to_odia_Llama3_8B_instruct ,
  author = {Mishan Maurya},
  title = {Introducing Fine Tuned LLM for Odia Language},
  year = {2024},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Dataset used to train MISHANM/Odia_text_generation_eng_to_odia_Llama3_8B_instruct