deberta_rse
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0243
- Accuracy: 0.9961
- F1: 0.9961
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.8808 | 1.0 | 276 | 0.2620 | 0.9237 | 0.9242 |
0.3108 | 2.0 | 552 | 0.2273 | 0.9471 | 0.9470 |
0.2543 | 3.0 | 828 | 0.1193 | 0.9700 | 0.9700 |
0.1788 | 4.0 | 1104 | 0.1284 | 0.9702 | 0.9705 |
0.1296 | 5.0 | 1380 | 0.0549 | 0.9891 | 0.9891 |
0.0669 | 6.0 | 1656 | 0.0398 | 0.9927 | 0.9927 |
0.0658 | 7.0 | 1932 | 0.0299 | 0.9957 | 0.9957 |
0.0379 | 8.0 | 2208 | 0.0216 | 0.9964 | 0.9964 |
0.0312 | 9.0 | 2484 | 0.0243 | 0.9961 | 0.9961 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 19
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Ludo33/deberta_rse
Base model
microsoft/deberta-v3-base