SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LucaZilli/all_mpnet_base_v2_190225")
# Run inference
sentences = [
'materiali isolanti per sistemi radianti a soffitto',
'materiali isolanti per edifici',
'privacy and data protection training',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
custom_dataset
andstsbenchmark
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | custom_dataset | stsbenchmark |
---|---|---|
pearson_cosine | 0.7376 | 0.8404 |
spearman_cosine | 0.7392 | 0.8342 |
Triplet
- Dataset:
all_nli_dataset
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9319 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 25,310 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 4 tokens
- mean: 13.32 tokens
- max: 31 tokens
- min: 4 tokens
- mean: 11.06 tokens
- max: 31 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
sentence1 sentence2 score ottimizzazione dei tempi di produzione per capi sartoriali di lusso
strumenti per l'ottimizzazione dei tempi di produzione
0.6
software di programmazione robotica per lucidatura
software gestionale generico
0.4
rete di sensori per l'analisi del suolo in tempo reale
software per gestione aziendale
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 3,164 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 13.61 tokens
- max: 31 tokens
- min: 4 tokens
- mean: 11.39 tokens
- max: 27 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
sentence1 sentence2 score ispezioni regolari per camion aziendali
ispezioni regolari per camion di consegna
1.0
blister packaging machines GMP compliant
food packaging machines
0.4
EMI shielding paints for electronics
Vernici per schermatura elettromagnetica dispositivi elettronici
0.8
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | custom_dataset_spearman_cosine | all_nli_dataset_cosine_accuracy | stsbenchmark_spearman_cosine |
---|---|---|---|---|---|---|
-1 | -1 | - | - | 0.7392 | 0.9319 | 0.8342 |
0.0632 | 100 | 0.0484 | - | - | - | - |
0.1264 | 200 | 0.0389 | 0.0363 | - | - | - |
0.1896 | 300 | 0.0377 | - | - | - | - |
0.2528 | 400 | 0.033 | 0.0307 | - | - | - |
0.3161 | 500 | 0.0302 | - | - | - | - |
0.3793 | 600 | 0.0329 | 0.0298 | - | - | - |
0.4425 | 700 | 0.0315 | - | - | - | - |
0.5057 | 800 | 0.0308 | 0.0275 | - | - | - |
0.5689 | 900 | 0.0309 | - | - | - | - |
0.6321 | 1000 | 0.0279 | 0.0282 | - | - | - |
0.6953 | 1100 | 0.0299 | - | - | - | - |
0.7585 | 1200 | 0.0286 | 0.0271 | - | - | - |
0.8217 | 1300 | 0.0292 | - | - | - | - |
0.8850 | 1400 | 0.027 | 0.0261 | - | - | - |
0.9482 | 1500 | 0.0254 | - | - | - | - |
1.0114 | 1600 | 0.0237 | 0.0242 | - | - | - |
1.0746 | 1700 | 0.0196 | - | - | - | - |
1.1378 | 1800 | 0.0196 | 0.0242 | - | - | - |
1.2010 | 1900 | 0.021 | - | - | - | - |
1.2642 | 2000 | 0.0225 | 0.0267 | - | - | - |
1.3274 | 2100 | 0.022 | - | - | - | - |
1.3906 | 2200 | 0.0203 | 0.0246 | - | - | - |
1.4539 | 2300 | 0.0178 | - | - | - | - |
1.5171 | 2400 | 0.019 | 0.0240 | - | - | - |
1.5803 | 2500 | 0.0209 | - | - | - | - |
1.6435 | 2600 | 0.0186 | 0.0240 | - | - | - |
1.7067 | 2700 | 0.0261 | - | - | - | - |
1.7699 | 2800 | 0.0193 | 0.0246 | - | - | - |
1.8331 | 2900 | 0.02 | - | - | - | - |
1.8963 | 3000 | 0.0196 | 0.0240 | - | - | - |
1.9595 | 3100 | 0.0186 | - | - | - | - |
2.0228 | 3200 | 0.0164 | 0.0226 | - | - | - |
2.0860 | 3300 | 0.0122 | - | - | - | - |
2.1492 | 3400 | 0.0123 | 0.0221 | - | - | - |
2.2124 | 3500 | 0.0135 | - | - | - | - |
2.2756 | 3600 | 0.0134 | 0.0226 | - | - | - |
2.3388 | 3700 | 0.0128 | - | - | - | - |
2.4020 | 3800 | 0.0126 | 0.0231 | - | - | - |
2.4652 | 3900 | 0.0134 | - | - | - | - |
2.5284 | 4000 | 0.0142 | 0.0231 | - | - | - |
2.5917 | 4100 | 0.0124 | - | - | - | - |
2.6549 | 4200 | 0.0132 | 0.0215 | - | - | - |
2.7181 | 4300 | 0.0136 | - | - | - | - |
2.7813 | 4400 | 0.013 | 0.0218 | - | - | - |
2.8445 | 4500 | 0.0127 | - | - | - | - |
2.9077 | 4600 | 0.0126 | 0.0213 | - | - | - |
2.9709 | 4700 | 0.0133 | - | - | - | - |
3.0341 | 4800 | 0.0103 | 0.0209 | - | - | - |
3.0973 | 4900 | 0.0086 | - | - | - | - |
3.1606 | 5000 | 0.0088 | 0.0211 | - | - | - |
3.2238 | 5100 | 0.0081 | - | - | - | - |
3.2870 | 5200 | 0.0079 | 0.0212 | - | - | - |
3.3502 | 5300 | 0.0094 | - | - | - | - |
3.4134 | 5400 | 0.0086 | 0.0210 | - | - | - |
3.4766 | 5500 | 0.0089 | - | - | - | - |
3.5398 | 5600 | 0.009 | 0.0209 | - | - | - |
3.6030 | 5700 | 0.0086 | - | - | - | - |
3.6662 | 5800 | 0.0087 | 0.0213 | - | - | - |
3.7295 | 5900 | 0.0085 | - | - | - | - |
3.7927 | 6000 | 0.0094 | 0.0213 | - | - | - |
3.8559 | 6100 | 0.0095 | - | - | - | - |
3.9191 | 6200 | 0.01 | 0.0212 | - | - | - |
3.9823 | 6300 | 0.0097 | - | - | - | - |
4.0455 | 6400 | 0.0081 | 0.0214 | - | - | - |
4.1087 | 6500 | 0.0095 | - | - | - | - |
4.1719 | 6600 | 0.0083 | 0.0208 | - | - | - |
4.2351 | 6700 | 0.0082 | - | - | - | - |
4.2984 | 6800 | 0.0074 | 0.0208 | - | - | - |
4.3616 | 6900 | 0.0076 | - | - | - | - |
4.4248 | 7000 | 0.0072 | 0.0205 | - | - | - |
4.4880 | 7100 | 0.0072 | - | - | - | - |
4.5512 | 7200 | 0.007 | 0.0205 | - | - | - |
4.6144 | 7300 | 0.0069 | - | - | - | - |
4.6776 | 7400 | 0.0069 | 0.0203 | - | - | - |
4.7408 | 7500 | 0.0068 | - | - | - | - |
4.8040 | 7600 | 0.0073 | 0.0204 | - | - | - |
4.8673 | 7700 | 0.0063 | - | - | - | - |
4.9305 | 7800 | 0.0065 | 0.0203 | - | - | - |
4.9937 | 7900 | 0.0069 | - | - | - | - |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for LucaZilli/all_mpnet_base_v2_190225
Base model
sentence-transformers/all-mpnet-base-v2Evaluation results
- Pearson Cosine on custom datasetself-reported0.738
- Spearman Cosine on custom datasetself-reported0.739
- Cosine Accuracy on all nli datasetself-reported0.932
- Pearson Cosine on stsbenchmarkself-reported0.840
- Spearman Cosine on stsbenchmarkself-reported0.834