Apollo-1-8B / README.md
Spestly's picture
Update README.md
e294977 verified
---
base_model:
- Qwen/Qwen3-8B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
license: other
license_name: anvdl-1.0
license_link: https://huggingface.co/apexion-ai/Nous-V1-8B/blob/main/LICENSE.md
language:
- en
- fr
- pt
- de
- ro
- sv
- da
- bg
- ru
- cs
- el
- uk
- es
- nl
- sk
- hr
- pl
- lt
- nb
- nn
- fa
- sl
- gu
- lv
- it
- oc
- ne
- mr
- be
- sr
- lb
- vec
- as
- cy
- szl
- ast
- hne
- awa
- mai
- bho
- sd
- ga
- fo
- hi
- pa
- bn
- or
- tg
- yi
- lmo
- lij
- scn
- fur
- sc
- gl
- ca
- is
- sq
- li
- prs
- af
- mk
- si
- ur
- mag
- bs
- hy
- zh
- yue
- my
- ar
- he
- mt
- id
- ms
- tl
- ceb
- jv
- su
- min
- ban
- pag
- ilo
- war
- ta
- te
- kn
- ml
- tr
- az
- uz
- kk
- ba
- tt
- th
- lo
- fi
- et
- hu
- vi
- km
- ja
- ko
- ka
- eu
- ht
- pap
- kea
- tpi
- sw
---
![banner](https://huggingface.co/NoemaResearch/Apollo-1-4B/resolve/main/img/banner.png)
# Apollo-1-8B
[![Model](https://img.shields.io/badge/Model-Apollo--1--8B-blue)](https://huggingface.co/NoemaResearch/Apollo-1-8B)
[![Base](https://img.shields.io/badge/Base-Qwen3--8B-green)](https://huggingface.co/Qwen/Qwen3-8B)
[![License](https://img.shields.io/badge/License-Apache_2.0-yellow)](LICENSE)
Apollo-1-8B is a **8 billion parameter instruction-tuned model** developed by **Noema Research**.
It is based on [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) and optimized for **advanced reasoning, instruction following, and high-performance deployment**.
This model represents the **large-scale member** of the Apollo series, balancing strong reasoning capabilities with efficiency for multi-domain applications.
---
## Model Overview
* **Base model:** `Qwen3-8B`
* **Architecture:** Decoder-only transformer
* **Parameters:** \~8B
* **Context length:** up to 32k tokens (inherits Qwen3 long-context support)
* **Domain:** General-purpose reasoning, instruction following, and code generation
* **Primary applications:**
* Advanced conversational AI
* Multi-step reasoning and problem solving
* Knowledge assistants and tutoring systems
* Software development and code generation
* **License:** anvdl-1.0
---
## Key Features
* **Instruction tuning** for reliable multi-step reasoning and task completion
* **Extended reasoning depth** compared to Apollo-1-4B for complex queries
* **Long-context handling**, inherited from Qwen3 architecture
* **Multilingual coverage**, supporting diverse languages and domains
* **Balanced resource requirements**, deployable on high-end consumer hardware and cloud GPUs
---
## Usage
The model is available in Hugging Face Transformers format. Example:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "NoemaResearch/Apollo-1-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
messages = [
{"role":"system", "content":"You are Apollo, a reasoning assistant."},
{"role":"user", "content":"Explain the differences between supervised, unsupervised, and reinforcement learning with examples."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=1024, temperature=0.6, top_p=0.9)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
**Recommended settings:**
* `temperature=0.4–0.8`
* `top_p=0.9–0.95`
* Lower temperatures yield more factual and concise answers
---
## Evaluation
Apollo-1-8B demonstrates stronger reasoning and instruction-following capabilities relative to Apollo-1-4B, with internal evaluations indicating:
* Higher accuracy on complex multi-step reasoning tasks
* More robust **instruction adherence**
* Reduced **hallucinations** in factual and structured outputs
* High efficiency for large-context tasks
A full benchmark report will be provided in a future update.
For upstream performance details, see the [Qwen3-8B model card](https://huggingface.co/Qwen/Qwen3-8B).
---
## Limitations
* **Reasoning scale**: While improved, Apollo-1-8B cannot match ultra-large models (14B+) on extremely complex or open-ended tasks
* **Knowledge breadth**: Some highly specialized or niche knowledge may be limited
* **Hallucinations**: May generate plausible but incorrect information
* **Prompt sensitivity**: Outputs remain dependent on careful prompt formulation
---
## Responsible Use
* Do not rely on Apollo-1-8B for critical decisions without human oversight
* Verify outputs before applying in factual, legal, or safety-critical contexts
* Avoid providing personal or sensitive data in prompts
* The model should not be used to generate unsafe, harmful, or disallowed content
---
## Model Variants
* **Full precision (safetensors)** — research and high-fidelity inference
* **bf16 / fp16** — efficient inference on modern accelerators
* **Quantized versions (int8 / int4)** — deployment in resource-constrained environments
---
## Citation
If you use this model, please cite both Apollo-1-8B and the Qwen3 base model:
```bibtex
@misc{noema2025apollo8b,
title={Apollo-1-8B},
author={Noema Research},
year={2025},
howpublished={\url{https://huggingface.co/NoemaResearch/Apollo-1-8B}}
}
```
---
## Acknowledgements
Apollo-1-8B builds upon the [Qwen3](https://huggingface.co/Qwen) family of models.
We thank the Qwen team for open-sourcing their models and enabling derivative research.