LeonardoBerti's picture
Upload 51 files
69524d0 verified
import os
import pandas as pd
import numpy as np
import torch
import constants as cst
from torch.utils import data
import matplotlib.pyplot as plt
class LOBSTERDataBuilder:
def __init__(
self,
stocks,
data_dir,
date_trading_days,
split_rates,
):
self.n_lob_levels = cst.N_LOB_LEVELS
self.data_dir = data_dir
self.date_trading_days = date_trading_days
self.stocks = stocks
self.split_rates = split_rates
self.prepare_save_datasets()
def prepare_save_datasets(self):
for i in range(len(self.stocks)):
stock = self.stocks[i]
path = "{}/{}/{}_{}_{}".format(
self.data_dir,
stock,
stock,
self.date_trading_days[0],
self.date_trading_days[1],
)
self.dataframes = []
self._prepare_dataframes(path, stock)
path_where_to_save = "{}/{}".format(
self.data_dir,
stock,
)
# Calculate mid-price and plot it
self._plot_mid_price(self.dataframes[0][1], stock)
self._compute_and_save_statistics(self.dataframes[0][1], self.dataframes[0][0], path_where_to_save, stock)
def _plot_mid_price(self, orderbook_df, stock):
# Calculate the mid-price
best_bid = orderbook_df["buy1"]
best_ask = orderbook_df["sell1"]
mid_price = (best_bid + best_ask) / 2
date_range = pd.date_range(start="01/02/2015", end="01/30/2015", periods=len(mid_price))
# Plot the mid-price
plt.figure(figsize=(10, 6))
plt.plot(date_range, mid_price, label=f'{stock} Mid-Price')
plt.xlabel('Time')
plt.ylabel('Mid-Price')
plt.title(f'{stock} Mid-Price')
plt.legend()
# Set x-axis labels
plt.xticks(rotation=45)
plt.gca().set_xticks([date_range[0], date_range[-1]])
plt.gca().set_xticklabels(['01/02/2015', '01/30/2015'])
# Save the plot
plot_filename = os.path.join(os.getcwd(), f'{stock}_mid_price_plot.pdf')
plt.savefig(plot_filename)
plt.close()
def _compute_and_save_statistics(self, orderbook_df, message_df, save_path, stock):
# Calculate the mid-price
best_bid = orderbook_df["buy1"]
best_ask = orderbook_df["sell1"]
spread = best_ask - best_bid
avg_spread = spread.mean()
liquidity = orderbook_df.iloc[:, 1::2].sum(axis=1).mean()
avg_liquidity = liquidity.mean()
self.open_mid_prices = np.array(self.open_mid_prices)
self.daily_returns = (self.open_mid_prices[1:] - self.open_mid_prices[:-1]) / self.open_mid_prices[:-1]
# Calculate statistics
daily_return_std = np.std(self.daily_returns)
daily_volume_std = np.std(self.daily_volumes)
daily_return_mean = np.mean(self.daily_returns)
daily_volume_mean = np.mean(self.daily_volumes)
# Save statistics to a file
stats = {
'daily_return_std': daily_return_std,
'daily_volume_std': daily_volume_std,
'daily_return_mean': daily_return_mean,
'daily_volume_mean': daily_volume_mean,
'average_spread': avg_spread,
'avgerage_spread_std': spread.std(),
'average_liquidity': avg_liquidity,
'average_liquidity_std': liquidity.std(),
}
stats_df = pd.DataFrame([stats])
stats_filename = os.path.join(save_path, f'{stock}_statistics.csv')
stats_df.to_csv(stats_filename, index=False)
def _prepare_dataframes(self, path, stock):
COLUMNS_NAMES = {"orderbook": ["sell1", "vsell1", "buy1", "vbuy1",
"sell2", "vsell2", "buy2", "vbuy2",
"sell3", "vsell3", "buy3", "vbuy3",
"sell4", "vsell4", "buy4", "vbuy4",
"sell5", "vsell5", "buy5", "vbuy5",
"sell6", "vsell6", "buy6", "vbuy6",
"sell7", "vsell7", "buy7", "vbuy7",
"sell8", "vsell8", "buy8", "vbuy8",
"sell9", "vsell9", "buy9", "vbuy9",
"sell10", "vsell10", "buy10", "vbuy10"],
"message": ["time", "event_type", "order_id", "size", "price", "direction"]}
self.num_trading_days = len(os.listdir(path))//2
split_days = self._split_days()
split_days = [i * 2 for i in split_days]
self._create_dataframes_splitted(path, split_days, COLUMNS_NAMES)
# divide all the price, both of lob and messages, by 10000, to have dollars as unit
for i in range(len(self.dataframes)):
self.dataframes[i][0]["price"] = self.dataframes[i][0]["price"] / 10000
self.dataframes[i][1].loc[:, ::2] /= 10000
train_input = self.dataframes[0][1].values
val_input = self.dataframes[1][1].values
test_input = self.dataframes[2][1].values
def _create_dataframes_splitted(self, path, split_days, COLUMNS_NAMES):
# iterate over files in the data directory of self.STOCK_NAME
self.open_mid_prices = []
self.daily_volumes = []
for i, filename in enumerate(sorted(os.listdir(path))):
f = os.path.join(path, filename)
print(f)
if os.path.isfile(f):
# then we create the df for the training set
if i < split_days[0]:
if (i % 2) == 0:
if i == 0:
train_messages = pd.read_csv(f, names=COLUMNS_NAMES["message"])
self.daily_volumes.append(train_messages["size"].sum())
else:
train_message = pd.read_csv(f, names=COLUMNS_NAMES["message"])
self.daily_volumes.append(train_message["size"].sum())
else:
if i == 1:
train_orderbooks = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
self.open_mid_prices.append(train_orderbooks["sell1"][0] + train_orderbooks["buy1"][0] / 20000)
if (len(train_orderbooks) != len(train_messages)):
raise ValueError("train_orderbook length is different than train_messages")
else:
train_orderbook = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
self.open_mid_prices.append(train_orderbook["sell1"][0] + train_orderbook["buy1"][0] / 20000)
train_messages = pd.concat([train_messages, train_message], axis=0)
train_orderbooks = pd.concat([train_orderbooks, train_orderbook], axis=0)
elif split_days[0] <= i < split_days[1]: # then we are creating the df for the validation set
if (i % 2) == 0:
if (i == split_days[0]):
self.dataframes.append([train_messages, train_orderbooks])
val_messages = pd.read_csv(f, names=COLUMNS_NAMES["message"])
self.daily_volumes.append(val_messages["size"].sum())
else:
val_message = pd.read_csv(f, names=COLUMNS_NAMES["message"])
self.daily_volumes.append(val_message["size"].sum())
else:
if i == split_days[0] + 1:
val_orderbooks = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
self.open_mid_prices.append(val_orderbooks["sell1"][0] + val_orderbooks["buy1"][0] / 20000)
if (len(val_orderbooks) != len(val_messages)):
raise ValueError("val_orderbook length is different than val_messages")
else:
val_orderbook = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
self.open_mid_prices.append(val_orderbook["sell1"][0] + val_orderbook["buy1"][0] / 20000)
val_messages = pd.concat([val_messages, val_message], axis=0)
val_orderbooks = pd.concat([val_orderbooks, val_orderbook], axis=0)
else: # then we are creating the df for the test set
if (i % 2) == 0:
if (i == split_days[1]):
self.dataframes.append([val_messages, val_orderbooks])
test_messages = pd.read_csv(f, names=COLUMNS_NAMES["message"])
self.daily_volumes.append(test_messages["size"].sum())
else:
test_message = pd.read_csv(f, names=COLUMNS_NAMES["message"])
self.daily_volumes.append(test_message["size"].sum())
else:
if i == split_days[1] + 1:
test_orderbooks = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
self.open_mid_prices.append(test_orderbooks["sell1"][0] + test_orderbooks["buy1"][0] / 20000)
if (len(test_orderbooks) != len(test_messages)):
raise ValueError("test_orderbook length is different than test_messages")
else:
test_orderbook = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
self.open_mid_prices.append(test_orderbook["sell1"][0] + test_orderbook["buy1"][0] / 20000)
test_messages = pd.concat([test_messages, test_message], axis=0)
test_orderbooks = pd.concat([test_orderbooks, test_orderbook], axis=0)
else:
raise ValueError("File {} is not a file".format(f))
self.dataframes.append([test_messages, test_orderbooks])
def _split_days(self):
train = int(self.num_trading_days * self.split_rates[0])
val = int(self.num_trading_days * self.split_rates[1]) + train
test = int(self.num_trading_days * self.split_rates[2]) + val
print(f"There are {train} days for training, {val - train} days for validation and {test - val} days for testing")
return [train, val, test]
data_builder = LOBSTERDataBuilder(
stocks=["TSLA"],
data_dir=cst.DATA_DIR,
date_trading_days=cst.DATE_TRADING_DAYS,
split_rates=cst.SPLIT_RATES,
)