File size: 9,450 Bytes
69524d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import pandas as pd
import numpy as np
import os
import torch
import pandas
import constants as cst
def z_score_orderbook(data, mean_size=None, mean_prices=None, std_size=None, std_prices=None):
""" DONE: remember to use the mean/std of the training set, to z-normalize the test set. """
if (mean_size is None) or (std_size is None):
mean_size = data.iloc[:, 1::2].stack().mean()
std_size = data.iloc[:, 1::2].stack().std()
#do the same thing for prices
if (mean_prices is None) or (std_prices is None):
mean_prices = data.iloc[:, 0::2].stack().mean() #price
std_prices = data.iloc[:, 0::2].stack().std() #price
# apply the z score to the original data using .loc with explicit float cast
price_cols = data.columns[0::2]
size_cols = data.columns[1::2]
#apply the z score to the original data
for col in size_cols:
data[col] = data[col].astype("float64")
data[col] = (data[col] - mean_size) / std_size
for col in price_cols:
data[col] = data[col].astype("float64")
data[col] = (data[col] - mean_prices) / std_prices
# check if there are null values, then raise value error
if data.isnull().values.any():
raise ValueError("data contains null value")
return data, mean_size, mean_prices, std_size, std_prices
def normalize_messages(data, mean_size=None, mean_prices=None, std_size=None, std_prices=None, mean_time=None, std_time=None, mean_depth=None, std_depth=None):
#apply z score to prices and size column
if (mean_size is None) or (std_size is None):
mean_size = data["size"].mean()
std_size = data["size"].std()
if (mean_prices is None) or (std_prices is None):
mean_prices = data["price"].mean()
std_prices = data["price"].std()
if (mean_time is None) or (std_time is None):
mean_time = data["time"].mean()
std_time = data["time"].std()
if (mean_depth is None) or (std_depth is None):
mean_depth = data["depth"].mean()
std_depth = data["depth"].std()
#apply the z score to the original data
data["time"] = (data["time"] - mean_time) / std_time
data["size"] = (data["size"] - mean_size) / std_size
data["price"] = (data["price"] - mean_prices) / std_prices
data["depth"] = (data["depth"] - mean_depth) / std_depth
# check if there are null values, then raise value error
if data.isnull().values.any():
raise ValueError("data contains null value")
data["event_type"] = data["event_type"]-1.0
data["event_type"] = data["event_type"].replace(2, 1)
data["event_type"] = data["event_type"].replace(3, 2)
# order_type = 0 -> limit order
# order_type = 1 -> cancel order
# order_type = 2 -> market order
return data, mean_size, mean_prices, std_size, std_prices, mean_time, std_time, mean_depth, std_depth
def reset_indexes(dataframes):
# reset the indexes of the messages and orderbooks
dataframes[0] = dataframes[0].reset_index(drop=True)
dataframes[1] = dataframes[1].reset_index(drop=True)
return dataframes
def sampling_quantity(dataframes, quantity=1000):
messages_df, orderbook_df = dataframes[0], dataframes[1]
# Calculate cumulative sum and create boolean mask
cumsum = messages_df['size'].cumsum()
sample_mask = (cumsum % quantity < messages_df['size'])
# Get indices where we need to sample
sampled_indices = messages_df.index[sample_mask].tolist()
# Update both dataframes efficiently using loc
messages_df = messages_df.loc[sampled_indices].reset_index(drop=True)
orderbook_df = orderbook_df.loc[sampled_indices].reset_index(drop=True)
return [messages_df, orderbook_df]
def sampling_time(dataframes, time):
# Convert the time column to datetime format if it's not already
dataframes[0]['time'] = pd.to_datetime(dataframes[0]['time'], unit='s')
# Resample the messages dataframe to get data at every second
resampled_messages = dataframes[0].set_index('time').resample(time).first().dropna().reset_index()
# Resample the orderbook dataframe to get data at every second
resampled_orderbook = dataframes[1].set_index(dataframes[0]['time']).resample(time).first().dropna().reset_index(drop=True)
# Update the dataframes with the resampled data
dataframes[0] = resampled_messages
# Transform the time column to seconds
dataframes[0]['time'] = dataframes[0]['time'].dt.second + dataframes[0]['time'].dt.minute * 60 + dataframes[0]['time'].dt.hour * 3600 + dataframes[0]['time'].dt.microsecond / 1e6
dataframes[1] = resampled_orderbook
return dataframes
def preprocess_data(dataframes, n_lob_levels, sampling_type, time=None, quantity=None):
dataframes = reset_indexes(dataframes)
# take only the first n_lob_levels levels of the orderbook and drop the others
dataframes[1] = dataframes[1].iloc[:, :n_lob_levels * cst.LEN_LEVEL]
# take the indexes of the dataframes that are of type
# 2 (partial deletion), 5 (execution of a hidden limit order),
# 6 (cross trade), 7 (trading halt) and drop it
indexes_to_drop = dataframes[0][dataframes[0]["event_type"].isin([2, 5, 6, 7])].index
dataframes[0] = dataframes[0].drop(indexes_to_drop)
dataframes[1] = dataframes[1].drop(indexes_to_drop)
dataframes = reset_indexes(dataframes)
# sample the dataframes according to the sampling type
if sampling_type == "time":
dataframes = sampling_time(dataframes, time)
elif sampling_type == "quantity":
dataframes = sampling_quantity(dataframes, quantity)
dataframes = reset_indexes(dataframes)
# drop index column in messages
dataframes[0] = dataframes[0].drop(columns=["order_id"])
# do the difference of time row per row in messages and subsitute the values with the differences
# Store the initial value of the "time" column
first_time = dataframes[0]["time"].values[0]
# Calculate the difference using diff
dataframes[0]["time"] = dataframes[0]["time"].diff()
# Set the first value directly
dataframes[0].iat[0, dataframes[0].columns.get_loc("time")] = first_time - 34200
# add depth column to messages
dataframes[0]["depth"] = 0
# we compute the depth of the orders with respect to the orderbook
# Extract necessary columns
prices = dataframes[0]["price"].values
directions = dataframes[0]["direction"].values
event_types = dataframes[0]["event_type"].values
bid_sides = dataframes[1].iloc[:, 2::4].values
ask_sides = dataframes[1].iloc[:, 0::4].values
# Initialize depth array
depths = np.zeros(dataframes[0].shape[0], dtype=int)
# Compute the depth of the orders with respect to the orderbook
for j in range(1, len(prices)):
order_price = prices[j]
direction = directions[j]
event_type = event_types[j]
index = j if event_type == 1 else j - 1
if direction == 1:
bid_price = bid_sides[index, 0]
depth = (bid_price - order_price) // 100
else:
ask_price = ask_sides[index, 0]
depth = (order_price - ask_price) // 100
depths[j] = max(depth, 0)
# Assign the computed depths back to the DataFrame
dataframes[0]["depth"] = depths
# we eliminate the first row of every dataframe because we can't deduce the depth
dataframes[0] = dataframes[0].iloc[1:, :]
dataframes[1] = dataframes[1].iloc[1:, :]
dataframes = reset_indexes(dataframes)
dataframes[0]["direction"] = dataframes[0]["direction"] * dataframes[0]["event_type"].apply(
lambda x: -1 if x == 4 else 1)
return dataframes[1], dataframes[0]
def unnormalize(x, mean, std):
return x * std + mean
def one_hot_encoding_type(data):
encoded_data = torch.zeros(data.shape[0], data.shape[1] + 2, dtype=torch.float32)
encoded_data[:, 0] = data[:, 0]
# encoding order type
one_hot_order_type = torch.nn.functional.one_hot((data[:, 1]).to(torch.int64), num_classes=3).to(
torch.float32)
encoded_data[:, 1:4] = one_hot_order_type
encoded_data[:, 4:] = data[:, 2:]
return encoded_data
def tanh_encoding_type(data):
data[:, 1] = torch.where(data[:, 1] == 1.0, 2.0, torch.where(data[:, 1] == 2.0, 1.0, data[:, 1]))
data[:, 1] = data[:, 1] - 1
return data
def to_sparse_representation(lob, n_levels):
if not isinstance(lob, np.ndarray):
lob = np.array(lob)
sparse_lob = np.zeros(n_levels * 2)
for j in range(lob.shape[0] // 2):
if j % 2 == 0:
ask_price = lob[0]
current_ask_price = lob[j*2]
depth = (current_ask_price - ask_price) // 100
if depth < n_levels and int(lob[j*2]) != 0:
sparse_lob[2*int(depth)] = lob[j*2+1]
else:
bid_price = lob[2]
current_bid_price = lob[j*2]
depth = (bid_price - current_bid_price) // 100
if depth < n_levels and int(lob[j*2]) != 0:
sparse_lob[2*int(depth)+1] = lob[j*2+1]
return sparse_lob
|