File size: 18,161 Bytes
69524d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import os
from utils.utils_data import z_score_orderbook, normalize_messages, preprocess_data, one_hot_encoding_type
import pandas as pd
import numpy as np
import torch
import constants as cst
from torch.utils import data


def lobster_load(path, all_features, len_smooth, h, seq_size):
    set = np.load(path)
    if h == 10:
        tmp = 5
    if h == 20:
        tmp = 4
    elif h == 50:
        tmp = 3
    elif h == 100:
        tmp = 2
    elif h == 200:
        tmp = 1
    labels = set[seq_size-len_smooth:, -tmp]
    labels = labels[np.isfinite(labels)]
    labels = torch.from_numpy(labels).long()
    if all_features:
        input = set[:, cst.LEN_ORDER:cst.LEN_ORDER + 40]
        orders = set[:, :cst.LEN_ORDER]
        input = torch.from_numpy(input).float()
        orders = torch.from_numpy(orders).float()
        input = torch.cat((input, orders), dim=1)
    else:
        input = set[:, cst.LEN_ORDER:cst.LEN_ORDER + 40]
        input = torch.from_numpy(input).float()

    return input, labels

    
def labeling(X, len, h, stock):
    # X is the orderbook
    # len is the time window smoothing length
    # h is the prediction horizon
    [N, D] = X.shape
    
    if h < len:
        len = h
    # Calculate previous and future mid-prices for all relevant indices
    previous_ask_prices = np.lib.stride_tricks.sliding_window_view(X[:, 0], window_shape=len)[:-h]
    previous_bid_prices = np.lib.stride_tricks.sliding_window_view(X[:, 2], window_shape=len)[:-h]
    future_ask_prices = np.lib.stride_tricks.sliding_window_view(X[:, 0], window_shape=len)[h:]
    future_bid_prices = np.lib.stride_tricks.sliding_window_view(X[:, 2], window_shape=len)[h:]

    previous_mid_prices = (previous_ask_prices + previous_bid_prices) / 2
    future_mid_prices = (future_ask_prices + future_bid_prices) / 2

    previous_mid_prices = np.mean(previous_mid_prices, axis=1)
    future_mid_prices = np.mean(future_mid_prices, axis=1)

    # Compute percentage change
    percentage_change = (future_mid_prices - previous_mid_prices) / previous_mid_prices
    
    # alpha is the average percentage change of the stock
    alpha = np.abs(percentage_change).mean() / 2
    
    # alpha is the average spread of the stock in percentage of the mid-price
    #alpha = (X[:, 0] - X[:, 2]).mean() / ((X[:, 0] + X[:, 2]) / 2).mean()
        
    print(f"Alpha: {alpha}")
    labels = np.where(percentage_change < -alpha, 2, np.where(percentage_change > alpha, 0, 1))
    print(f"Number of labels: {np.unique(labels, return_counts=True)}")
    print(f"Percentage of labels: {np.unique(labels, return_counts=True)[1] / labels.shape[0]}")
    return labels


class LOBSTERDataBuilder:
    def __init__(

        self,

        stocks,

        data_dir,

        date_trading_days,

        split_rates,

        sampling_type,

        sampling_time,

        sampling_quantity,

    ):
        self.n_lob_levels = cst.N_LOB_LEVELS
        self.data_dir = data_dir
        self.date_trading_days = date_trading_days
        self.stocks = stocks
        self.split_rates = split_rates
        
        self.sampling_type = sampling_type
        self.sampling_time = sampling_time
        self.sampling_quantity = sampling_quantity


    def prepare_save_datasets(self):
        for i in range(len(self.stocks)):
            stock = self.stocks[i]
            path = "{}/{}/{}_{}_{}".format(
                self.data_dir,
                stock,
                stock,
                self.date_trading_days[0],
                self.date_trading_days[1],
            )
            self.dataframes = []
            self._prepare_dataframes(path, stock)

            path_where_to_save = "{}/{}".format(
                self.data_dir,
                stock,
            )

            self.train_input = pd.concat(self.dataframes[0], axis=1).values
            self.val_input = pd.concat(self.dataframes[1], axis=1).values
            self.test_input = pd.concat(self.dataframes[2], axis=1).values
            self.train_set = pd.concat([pd.DataFrame(self.train_input), pd.DataFrame(self.train_labels_horizons)], axis=1).values
            self.val_set = pd.concat([pd.DataFrame(self.val_input), pd.DataFrame(self.val_labels_horizons)], axis=1).values
            self.test_set = pd.concat([pd.DataFrame(self.test_input), pd.DataFrame(self.test_labels_horizons)], axis=1).values
            self._save(path_where_to_save)


    def _prepare_dataframes(self, path, stock):
        COLUMNS_NAMES = {"orderbook": ["sell1", "vsell1", "buy1", "vbuy1",
                                       "sell2", "vsell2", "buy2", "vbuy2",
                                       "sell3", "vsell3", "buy3", "vbuy3",
                                       "sell4", "vsell4", "buy4", "vbuy4",
                                       "sell5", "vsell5", "buy5", "vbuy5",
                                       "sell6", "vsell6", "buy6", "vbuy6",
                                       "sell7", "vsell7", "buy7", "vbuy7",
                                       "sell8", "vsell8", "buy8", "vbuy8",
                                       "sell9", "vsell9", "buy9", "vbuy9",
                                       "sell10", "vsell10", "buy10", "vbuy10"],
                         "message": ["time", "event_type", "order_id", "size", "price", "direction"]}
        self.num_trading_days = len(os.listdir(path))//2
        split_days = self._split_days()
        split_days = [i * 2 for i in split_days]
        self._create_dataframes_splitted(path, split_days, COLUMNS_NAMES)
        # divide all the price, both of lob and messages, by 10000, to have dollars as unit
        for i in range(len(self.dataframes)):
            self.dataframes[i][0]["price"] = self.dataframes[i][0]["price"] / 10000
            self.dataframes[i][1].loc[:, ::2] /= 10000
        train_input = self.dataframes[0][1].values
        val_input = self.dataframes[1][1].values
        test_input = self.dataframes[2][1].values
        #create a dataframe for the labels
        for i in range(len(cst.LOBSTER_HORIZONS)):
            if i == 0:
                train_labels = labeling(train_input, cst.LEN_SMOOTH, cst.LOBSTER_HORIZONS[i], stock)
                val_labels = labeling(val_input, cst.LEN_SMOOTH, cst.LOBSTER_HORIZONS[i], stock)
                test_labels = labeling(test_input, cst.LEN_SMOOTH, cst.LOBSTER_HORIZONS[i], stock)
                train_labels = np.concatenate([train_labels, np.full(shape=(train_input.shape[0] - train_labels.shape[0]), fill_value=np.inf)])
                val_labels = np.concatenate([val_labels, np.full(shape=(val_input.shape[0] - val_labels.shape[0]), fill_value=np.inf)])
                test_labels = np.concatenate([test_labels, np.full(shape=(test_input.shape[0] - test_labels.shape[0]), fill_value=np.inf)])
                self.train_labels_horizons = pd.DataFrame(train_labels, columns=["label_h{}".format(cst.LOBSTER_HORIZONS[i])])
                self.val_labels_horizons = pd.DataFrame(val_labels, columns=["label_h{}".format(cst.LOBSTER_HORIZONS[i])])
                self.test_labels_horizons = pd.DataFrame(test_labels, columns=["label_h{}".format(cst.LOBSTER_HORIZONS[i])])
            else:
                train_labels = labeling(train_input, cst.LEN_SMOOTH, cst.LOBSTER_HORIZONS[i], stock)
                val_labels = labeling(val_input, cst.LEN_SMOOTH, cst.LOBSTER_HORIZONS[i], stock)
                test_labels = labeling(test_input, cst.LEN_SMOOTH, cst.LOBSTER_HORIZONS[i], stock)
                train_labels = np.concatenate([train_labels, np.full(shape=(train_input.shape[0] - train_labels.shape[0]), fill_value=np.inf)])
                val_labels = np.concatenate([val_labels, np.full(shape=(val_input.shape[0] - val_labels.shape[0]), fill_value=np.inf)])
                test_labels = np.concatenate([test_labels, np.full(shape=(test_input.shape[0] - test_labels.shape[0]), fill_value=np.inf)])
                self.train_labels_horizons["label_h{}".format(cst.LOBSTER_HORIZONS[i])] = train_labels
                self.val_labels_horizons["label_h{}".format(cst.LOBSTER_HORIZONS[i])] = val_labels
                self.test_labels_horizons["label_h{}".format(cst.LOBSTER_HORIZONS[i])] = test_labels
        
        #self._sparse_representation()
        
        # to conclude the preprocessing we normalize the dataframes
        self._normalize_dataframes()


    def _sparse_representation(self):
        tick_size = 0.01
        for i in range(len(self.dataframes)):
            dense_repr = self.dataframes[i][1].values
            sparse_repr = np.zeros((dense_repr.shape[0], dense_repr.shape[1] + 1))
            for row in range(dense_repr.shape[0]):
                sparse_pos_ask = 0
                sparse_pos_bid = 0
                mid_price = (dense_repr[row][0] + dense_repr[row][2]) / 2
                sparse_repr[row][-1] = mid_price
                for col in range(0, dense_repr.shape[1], 2):
                    if col == 0:
                        start_ask = dense_repr[row][col]
                    elif col == 2:
                        start_bid = dense_repr[row][col]
                    elif col % 4 == 0:
                        if sparse_pos_ask < (sparse_repr.shape[1]) - 1 / 2:
                            actual_ask = dense_repr[row][col]
                            for level in range(0, actual_ask-start_ask, -tick_size):
                                if sparse_pos_ask < (sparse_repr.shape[1]) - 1 / 2:
                                    if level == actual_ask - start_ask - tick_size:
                                        sparse_repr[row][sparse_pos_ask] = dense_repr[row][col+1]
                                    else:
                                        sparse_repr[row][sparse_pos_ask] = 0
                                    sparse_pos_ask += 1
                                else:
                                    break
                            start_ask = actual_ask
                        else:
                            continue
                    elif col % 4 == 2:
                        if sparse_pos_bid < (sparse_repr.shape[1]) - 1 / 2:
                            actual_bid = dense_repr[row][col]
                            for level in range(0, start_bid-actual_bid, -tick_size):
                                if sparse_pos_bid < (sparse_repr.shape[1]) - 1 / 2:
                                    if level == start_bid - actual_bid - tick_size:
                                        sparse_repr[row][sparse_pos_ask] = dense_repr[row][col+1]
                                    else:
                                        sparse_repr[row][sparse_pos_ask] = 0
                                    sparse_pos_bid += 1
                                else:
                                    break
                            start_bid = actual_bid
                        else:
                            continue
                

    def _create_dataframes_splitted(self, path, split_days, COLUMNS_NAMES):
        # iterate over files in the data directory of self.STOCK_NAME
        total_shape = 0
        for i, filename in enumerate(sorted(os.listdir(path))):
            f = os.path.join(path, filename)
            print(f)
            if os.path.isfile(f):
                # then we create the df for the training set
                if i < split_days[0]:
                    if (i % 2) == 0:
                        if i == 0:
                            train_messages = pd.read_csv(f, names=COLUMNS_NAMES["message"])
                        else:
                            train_message = pd.read_csv(f, names=COLUMNS_NAMES["message"])

                    else:
                        if i == 1:
                            train_orderbooks = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
                            total_shape += train_orderbooks.shape[0]
                            train_orderbooks, train_messages = preprocess_data([train_messages, train_orderbooks], self.n_lob_levels, self.sampling_type, self.sampling_time, self.sampling_quantity)
                            if (len(train_orderbooks) != len(train_messages)):
                                raise ValueError("train_orderbook length is different than train_messages")
                        else:
                            train_orderbook = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
                            total_shape += train_orderbook.shape[0]
                            train_orderbook, train_message = preprocess_data([train_message, train_orderbook], self.n_lob_levels, self.sampling_type, self.sampling_time, self.sampling_quantity)
                            train_messages = pd.concat([train_messages, train_message], axis=0)
                            train_orderbooks = pd.concat([train_orderbooks, train_orderbook], axis=0)

                elif split_days[0] <= i < split_days[1]:  # then we are creating the df for the validation set
                    if (i % 2) == 0:
                        if (i == split_days[0]):
                            self.dataframes.append([train_messages, train_orderbooks])
                            val_messages = pd.read_csv(f, names=COLUMNS_NAMES["message"])
                        else:
                            val_message = pd.read_csv(f, names=COLUMNS_NAMES["message"])
                    else:
                        if i == split_days[0] + 1:
                            val_orderbooks = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
                            total_shape += val_orderbooks.shape[0]
                            val_orderbooks, val_messages = preprocess_data([val_messages, val_orderbooks], self.n_lob_levels, self.sampling_type, self.sampling_time, self.sampling_quantity)
                            if (len(val_orderbooks) != len(val_messages)):
                                raise ValueError("val_orderbook length is different than val_messages")
                        else:
                            val_orderbook = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
                            total_shape += val_orderbook.shape[0]
                            val_orderbook, val_message = preprocess_data([val_message, val_orderbook], self.n_lob_levels, self.sampling_type, self.sampling_time, self.sampling_quantity)
                            val_messages = pd.concat([val_messages, val_message], axis=0)
                            val_orderbooks = pd.concat([val_orderbooks, val_orderbook], axis=0)

                else:  # then we are creating the df for the test set

                    if (i % 2) == 0:
                        if (i == split_days[1]):
                            self.dataframes.append([val_messages, val_orderbooks])
                            test_messages = pd.read_csv(f, names=COLUMNS_NAMES["message"])
                        else:
                            test_message = pd.read_csv(f, names=COLUMNS_NAMES["message"])

                    else:
                        if i == split_days[1] + 1:
                            test_orderbooks = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
                            test_orderbooks, test_messages = preprocess_data([test_messages, test_orderbooks], self.n_lob_levels, self.sampling_type, self.sampling_time, self.sampling_quantity)
                            if (len(test_orderbooks) != len(test_messages)):
                                raise ValueError("test_orderbook length is different than test_messages")
                        else:
                            test_orderbook = pd.read_csv(f, names=COLUMNS_NAMES["orderbook"])
                            test_orderbook, test_message = preprocess_data([test_message, test_orderbook], self.n_lob_levels, self.sampling_type, self.sampling_time, self.sampling_quantity)
                            test_messages = pd.concat([test_messages, test_message], axis=0)
                            test_orderbooks = pd.concat([test_orderbooks, test_orderbook], axis=0)
            else:
                raise ValueError("File {} is not a file".format(f))
        self.dataframes.append([test_messages, test_orderbooks])
        print(f"Total shape of the orderbooks is {total_shape}")


    def _normalize_dataframes(self):
        #apply z score to orderbooks
        for i in range(len(self.dataframes)):
            if (i == 0):
                self.dataframes[i][1], mean_size, mean_prices, std_size, std_prices = z_score_orderbook(self.dataframes[i][1])
            else:
                self.dataframes[i][1], _, _, _, _ = z_score_orderbook(self.dataframes[i][1], mean_size, mean_prices, std_size, std_prices)

        #apply z-score to size and prices of messages with the statistics of the train set
        for i in range(len(self.dataframes)):
            if (i == 0):
                self.dataframes[i][0], mean_size, mean_prices, std_size, std_prices, mean_time, std_time, mean_depth, std_depth = normalize_messages(self.dataframes[i][0])
            else:
                self.dataframes[i][0], _, _, _, _, _, _, _, _ = normalize_messages(self.dataframes[i][0], mean_size, mean_prices, std_size, std_prices, mean_time, std_time, mean_depth, std_depth)

    def _save(self, path_where_to_save):
        np.save(path_where_to_save + "/train.npy", self.train_set)
        np.save(path_where_to_save + "/val.npy", self.val_set)
        np.save(path_where_to_save + "/test.npy", self.test_set)


    def _split_days(self):
        train = int(self.num_trading_days * self.split_rates[0])
        val = int(self.num_trading_days * self.split_rates[1]) + train
        test = int(self.num_trading_days * self.split_rates[2]) + val
        print(f"There are {train} days for training, {val - train} days for validation and {test - val} days for testing")
        return [train, val, test]