File size: 7,435 Bytes
69524d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from torch import nn
import torch
from einops import rearrange
import constants as cst
from models.bin import BiN
from models.mlplob import MLP
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns


class ComputeQKV(nn.Module):
    def __init__(self, hidden_dim: int, num_heads: int):
        super().__init__()
        self.hidden_dim = hidden_dim
        self.num_heads = num_heads
        self.q = nn.Linear(hidden_dim, hidden_dim*num_heads)
        self.k = nn.Linear(hidden_dim, hidden_dim*num_heads)
        self.v = nn.Linear(hidden_dim, hidden_dim*num_heads)
        
    def forward(self, x):
        q = self.q(x)
        k = self.k(x)
        v = self.v(x)
        return q, k, v


class TransformerLayer(nn.Module):
    def __init__(self, hidden_dim: int, num_heads: int, final_dim: int):
        super().__init__()
        self.hidden_dim = hidden_dim
        self.num_heads = num_heads
        self.norm = nn.LayerNorm(hidden_dim)
        self.qkv = ComputeQKV(hidden_dim, num_heads)
        self.attention = nn.MultiheadAttention(hidden_dim*num_heads, num_heads, batch_first=True, device=cst.DEVICE)
        self.mlp = MLP(hidden_dim, hidden_dim*4, final_dim)
        self.w0 = nn.Linear(hidden_dim*num_heads, hidden_dim)
        
    def forward(self, x):
        res = x
        q, k, v = self.qkv(x)
        x, att = self.attention(q, k, v, average_attn_weights=False, need_weights=True)
        x = self.w0(x)
        x = x + res
        x = self.norm(x)
        x = self.mlp(x)
        if x.shape[-1] == res.shape[-1]:
            x = x + res
        return x, att


class TLOB(nn.Module):
    def __init__(self, 

                 hidden_dim: int,

                 num_layers: int,

                 seq_size: int,

                 num_features: int,

                 num_heads: int,

                 is_sin_emb: bool,

                 dataset_type: str

                 ) -> None:
        super().__init__()
        
        self.hidden_dim = hidden_dim
        self.num_layers = num_layers
        self.is_sin_emb = is_sin_emb
        self.seq_size = seq_size
        self.num_heads = num_heads
        self.dataset_type = dataset_type
        self.layers = nn.ModuleList()
        self.first_branch = nn.ModuleList()
        self.second_branch = nn.ModuleList()
        self.order_type_embedder = nn.Embedding(3, 1)
        self.norm_layer = BiN(num_features, seq_size)
        self.emb_layer = nn.Linear(num_features, hidden_dim)
        if is_sin_emb:
            self.pos_encoder = sinusoidal_positional_embedding(seq_size, hidden_dim)
        else:
            self.pos_encoder = nn.Parameter(torch.randn(1, seq_size, hidden_dim))
        
        for i in range(num_layers):
            if i != num_layers-1:
                self.layers.append(TransformerLayer(hidden_dim, num_heads, hidden_dim))
                self.layers.append(TransformerLayer(seq_size, num_heads, seq_size))
            else:
                self.layers.append(TransformerLayer(hidden_dim, num_heads, hidden_dim//4))
                self.layers.append(TransformerLayer(seq_size, num_heads, seq_size//4))
        self.att_temporal = []
        self.att_feature = []
        self.mean_att_distance_temporal = []
        total_dim = (hidden_dim//4)*(seq_size//4)
        self.final_layers = nn.ModuleList()
        while total_dim > 128:
            self.final_layers.append(nn.Linear(total_dim, total_dim//4))
            self.final_layers.append(nn.GELU())
            total_dim = total_dim//4
        self.final_layers.append(nn.Linear(total_dim, 3))
        
    
    def forward(self, input, store_att=False):
        if self.dataset_type == "LOBSTER":
            continuous_features = torch.cat([input[:, :, :41], input[:, :, 42:]], dim=2)
            order_type = input[:, :, 41].long()
            order_type_emb = self.order_type_embedder(order_type).detach()
            x = torch.cat([continuous_features, order_type_emb], dim=2)
        else:
            x = input
        x = rearrange(x, 'b s f -> b f s')
        x = self.norm_layer(x)
        x = rearrange(x, 'b f s -> b s f')
        x = self.emb_layer(x)
        x = x[:] + self.pos_encoder
        mean_att_distance_temporal = np.zeros((self.num_layers, self.num_heads))
        att_max_temporal = np.zeros((self.num_layers, 2, self.num_heads, self.seq_size))
        att_max_feature = np.zeros((self.num_layers-1, 2, self.num_heads, self.hidden_dim))
        att_temporal = np.zeros((self.num_layers, self.num_heads, self.seq_size, self.seq_size))
        att_feature = np.zeros((self.num_layers-1, self.num_heads, self.hidden_dim, self.hidden_dim))
        for i in range(len(self.layers)):
            x, att = self.layers[i](x)
            att = att.detach()
            x = x.permute(0, 2, 1)
            if store_att:
                if i % 2 == 0:
                    att_temporal[i//2] = att[0].cpu().numpy()
                    values, indices = att[0].max(dim=2)
                    mean_att_distance_temporal[i//2] = compute_mean_att_distance(att[0])
                    att_max_temporal[i//2, 0] = indices.cpu().numpy()
                    att_max_temporal[i//2, 1] = values.cpu().numpy()
                elif i % 2 == 1 and i != len(self.layers)-1:
                    att_feature[i//2] = att[0].cpu().numpy()
                    values, indices = att[0].max(dim=2)
                    att_max_feature[i//2, 0] = indices.cpu().numpy()
                    att_max_feature[i//2, 1] = values.cpu().numpy()
        self.mean_att_distance_temporal.append(mean_att_distance_temporal)
        if store_att:
            self.att_temporal.append(att_max_temporal)
            self.att_feature.append(att_max_feature)
        x = rearrange(x, 'b s f -> b (f s) 1')              
        x = x.reshape(x.shape[0], -1)
        for layer in self.final_layers:
            x = layer(x)
        return x, att_temporal, att_feature
    
    
def sinusoidal_positional_embedding(token_sequence_size, token_embedding_dim, n=10000.0):

    if token_embedding_dim % 2 != 0:
        raise ValueError("Sinusoidal positional embedding cannot apply to odd token embedding dim (got dim={:d})".format(token_embedding_dim))

    T = token_sequence_size
    d = token_embedding_dim

    positions = torch.arange(0, T).unsqueeze_(1)
    embeddings = torch.zeros(T, d)

    denominators = torch.pow(n, 2*torch.arange(0, d//2)/d) # 10000^(2i/d_model), i is the index of embedding
    embeddings[:, 0::2] = torch.sin(positions/denominators) # sin(pos/10000^(2i/d_model))
    embeddings[:, 1::2] = torch.cos(positions/denominators) # cos(pos/10000^(2i/d_model))

    return embeddings.to(cst.DEVICE, non_blocking=True)


def count_parameters(layer):
    print(f"Number of parameters: {sum(p.numel() for p in layer.parameters() if p.requires_grad)}")
    

def compute_mean_att_distance(att):
    att_distances = np.zeros((att.shape[0], att.shape[1]))
    for h in range(att.shape[0]):
        for key in range(att.shape[2]):
            for query in range(att.shape[1]):
                distance = abs(query-key)
                att_distances[h, key] += torch.abs(att[h, query, key]).cpu().item()*distance
    mean_distances = att_distances.mean(axis=1)
    return mean_distances