lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6973
  • Answer: {'precision': 0.8658109684947491, 'recall': 0.9082007343941249, 'f1': 0.886499402628435, 'number': 817}
  • Header: {'precision': 0.6770833333333334, 'recall': 0.5462184873949579, 'f1': 0.6046511627906976, 'number': 119}
  • Question: {'precision': 0.9074243813015582, 'recall': 0.9192200557103064, 'f1': 0.9132841328413284, 'number': 1077}
  • Overall Precision: 0.8792
  • Overall Recall: 0.8927
  • Overall F1: 0.8859
  • Overall Accuracy: 0.8011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.1857 26.32 500 1.4181 {'precision': 0.8298109010011123, 'recall': 0.9130966952264382, 'f1': 0.8694638694638694, 'number': 817} {'precision': 0.6923076923076923, 'recall': 0.5294117647058824, 'f1': 0.5999999999999999, 'number': 119} {'precision': 0.886672710788758, 'recall': 0.9080779944289693, 'f1': 0.8972477064220182, 'number': 1077} 0.8538 0.8877 0.8704 0.7981
0.0068 52.63 1000 1.6084 {'precision': 0.8581235697940504, 'recall': 0.9179926560587516, 'f1': 0.8870490833826139, 'number': 817} {'precision': 0.5877192982456141, 'recall': 0.5630252100840336, 'f1': 0.5751072961373391, 'number': 119} {'precision': 0.9083255378858747, 'recall': 0.9015784586815228, 'f1': 0.9049394221808015, 'number': 1077} 0.8692 0.8882 0.8786 0.7956
0.0018 78.95 1500 1.6068 {'precision': 0.8742655699177438, 'recall': 0.9106487148102815, 'f1': 0.8920863309352519, 'number': 817} {'precision': 0.6050420168067226, 'recall': 0.6050420168067226, 'f1': 0.6050420168067226, 'number': 119} {'precision': 0.902867715078631, 'recall': 0.9062209842154132, 'f1': 0.9045412418906396, 'number': 1077} 0.8737 0.8902 0.8819 0.8095
0.0007 105.26 2000 1.6522 {'precision': 0.8611111111111112, 'recall': 0.9106487148102815, 'f1': 0.8851873884592504, 'number': 817} {'precision': 0.6126126126126126, 'recall': 0.5714285714285714, 'f1': 0.591304347826087, 'number': 119} {'precision': 0.9098513011152416, 'recall': 0.9090064995357474, 'f1': 0.9094287041337669, 'number': 1077} 0.8732 0.8897 0.8814 0.8028
0.0002 131.58 2500 1.6973 {'precision': 0.8658109684947491, 'recall': 0.9082007343941249, 'f1': 0.886499402628435, 'number': 817} {'precision': 0.6770833333333334, 'recall': 0.5462184873949579, 'f1': 0.6046511627906976, 'number': 119} {'precision': 0.9074243813015582, 'recall': 0.9192200557103064, 'f1': 0.9132841328413284, 'number': 1077} 0.8792 0.8927 0.8859 0.8011

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
3
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for LeamonLee/lilt-en-funsd

Finetuned
(47)
this model