|
--- |
|
license: mit |
|
base_model: LazarusNLP/NusaBERT-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- indonlu |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: NusaBERT-base-NERP |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: indonlu |
|
type: indonlu |
|
config: nerp |
|
split: validation |
|
args: nerp |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8060507833603457 |
|
- name: Recall |
|
type: recall |
|
value: 0.8405633802816901 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8229453943739657 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9634085213032582 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# NusaBERT-base-NERP |
|
|
|
This model is a fine-tuned version of [LazarusNLP/NusaBERT-base](https://huggingface.co/LazarusNLP/NusaBERT-base) on the indonlu dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1254 |
|
- Precision: 0.8061 |
|
- Recall: 0.8406 |
|
- F1: 0.8229 |
|
- Accuracy: 0.9634 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 420 | 0.1444 | 0.7415 | 0.8272 | 0.7820 | 0.9543 | |
|
| 0.2385 | 2.0 | 840 | 0.1276 | 0.7879 | 0.8187 | 0.8030 | 0.9586 | |
|
| 0.1143 | 3.0 | 1260 | 0.1260 | 0.7815 | 0.8510 | 0.8148 | 0.9597 | |
|
| 0.0903 | 4.0 | 1680 | 0.1305 | 0.7836 | 0.8516 | 0.8162 | 0.9596 | |
|
| 0.07 | 5.0 | 2100 | 0.1342 | 0.8158 | 0.8255 | 0.8206 | 0.9605 | |
|
| 0.0582 | 6.0 | 2520 | 0.1343 | 0.8172 | 0.8408 | 0.8288 | 0.9606 | |
|
| 0.0582 | 7.0 | 2940 | 0.1440 | 0.7936 | 0.8476 | 0.8197 | 0.9594 | |
|
| 0.0521 | 8.0 | 3360 | 0.1447 | 0.8069 | 0.8453 | 0.8257 | 0.9605 | |
|
| 0.0446 | 9.0 | 3780 | 0.1512 | 0.7996 | 0.8453 | 0.8218 | 0.9599 | |
|
| 0.0417 | 10.0 | 4200 | 0.1524 | 0.8078 | 0.8453 | 0.8261 | 0.9606 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.0+cu118 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.1 |
|
|