YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

η»ζ΅‹θ―•οΌŒζ­€η‰ˆζœ¬ηš„ζ•ˆζžœθΎƒε₯½πŸ˜€

I use the 50k Chinese data, which is the combination of alpaca_chinese_instruction_dataset and the Chinese conversation data from sharegpt-90k data. I finetune the model for 3 epochs use a single 4090 GPU with cutoff_len=1024.

Use in Python:

from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import PeftModel
import torch


tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")

model = LlamaForCausalLM.from_pretrained(
    "decapoda-research/llama-7b-hf",
    load_in_8bit=True,
    torch_dtype=torch.float16,
    device_map="auto",
)
model = PeftModel.from_pretrained(
    model,
    "Laurie/lora-instruct-chat-50k-cn-en",
    torch_dtype=torch.float16,
    device_map={'': 0}
)

device = "cuda" if torch.cuda.is_available() else "cpu"

inputs = tokenizer("δ»€δΉˆζ˜―θ‡ͺη„Άθ―­θ¨€ε€„η†οΌŸ",return_tensors="pt" )

model.to(device)

with torch.no_grad():
    inputs = {k: v.to(device) for k, v in inputs.items()}
    outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=129)
    print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.