|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from typing import Any, List, Optional, Tuple, Union |
|
|
|
import torch.distributed as dist |
|
import torch.utils.checkpoint |
|
import transformers |
|
from .conversation import get_conv_template |
|
from .modeling_internlm2 import InternLM2ForCausalLM |
|
from peft import LoraConfig, get_peft_model |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, |
|
LlamaTokenizer, Qwen2ForCausalLM) |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ModelOutput, logging |
|
from transformers.activations import ACT2FN |
|
from timm.models.layers import DropPath |
|
|
|
from .configuration_internvl_chat import InternVLChatConfig |
|
from .modeling_intern_vit import InternVisionModel |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
torch.set_printoptions(threshold=float('inf')) |
|
|
|
def version_cmp(v1, v2, op='eq'): |
|
import operator |
|
|
|
from packaging import version |
|
op_func = getattr(operator, op) |
|
return op_func(version.parse(v1), version.parse(v2)) |
|
|
|
|
|
def pixel_shuffle(x, scale_factor=0.5, ps_version='v2'): |
|
n, w, h, c = x.size() |
|
|
|
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) |
|
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
|
x = x.view(n, int(h * scale_factor), int(w * scale_factor), |
|
int(c / (scale_factor * scale_factor))) |
|
if ps_version == 'v1': |
|
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " |
|
'which results in a transposed image.') |
|
else: |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
return x |
|
|
|
def func_aggregation(x, image_ratio, h, w): |
|
x = x.reshape(image_ratio[0] * image_ratio[1], h, w, -1) |
|
x = x.transpose(1, 2) |
|
x = x.reshape(image_ratio[0], image_ratio[1] * w, h, x.shape[-1]) |
|
x = x.transpose(1, 2) |
|
x = x.reshape(1, image_ratio[0] * h, image_ratio[1] * w, x.shape[-1]) |
|
|
|
return x |
|
|
|
def func_transform(x, block_height, block_width): |
|
b = x.shape[0] |
|
C = x.shape[-1] |
|
|
|
num_blocks_height = x.shape[1] // block_height |
|
num_blocks_width = x.shape[2] // block_width |
|
|
|
x = x.reshape(b, num_blocks_height, block_height, num_blocks_width, block_width, C) |
|
x = x.transpose(3, 2) |
|
x = x.reshape(-1, block_height, block_width, C) |
|
x = x.view(-1, block_height * block_width, C) |
|
|
|
return x |
|
|
|
def func_padding(x, max_length=4): |
|
current_length = x.shape[1] |
|
C = x.shape[-1] |
|
|
|
if current_length < max_length: |
|
padding_length = max_length - current_length |
|
padded_tensor = torch.cat([x, torch.zeros([256, padding_length, C], dtype=x.dtype, device=x.device)], dim=1) |
|
else: |
|
padded_tensor = x |
|
|
|
attention_ones = torch.ones([256, 1, current_length], dtype=x.dtype, device=x.device) |
|
attention_zeros = torch.zeros([256, 1, max_length - current_length], dtype=x.dtype, device=x.device) |
|
attention_mask = torch.cat([attention_ones, attention_zeros], dim=2) |
|
attention_mask = attention_mask.to(dtype=torch.bool) |
|
|
|
return padded_tensor, attention_mask |
|
|
|
|
|
class InternRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
InternRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
class InternAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, embed_dim, num_heads): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:' |
|
f' {self.num_heads}).' |
|
) |
|
|
|
self.scale = self.head_dim ** -0.5 |
|
self.q = nn.Linear(self.embed_dim, self.embed_dim, bias=False) |
|
self.k = nn.Linear(self.embed_dim, self.embed_dim, bias=False) |
|
self.v = nn.Linear(self.embed_dim, self.embed_dim, bias=False) |
|
self.proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) |
|
self.norm1 = InternRMSNorm(self.embed_dim) |
|
self.norm2 = InternRMSNorm(self.embed_dim) |
|
|
|
def _naive_attn(self, q, kv, mask=None): |
|
q = self.norm1(q) |
|
k = v = self.norm2(kv) |
|
|
|
B, N_q, C = q.shape |
|
N_kv = kv.shape[1] |
|
|
|
q = self.q(q).reshape(B, N_q, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
k = self.k(k).reshape(B, N_kv, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
v = self.v(v).reshape(B, N_kv, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
attn = ((q * self.scale) @ k.transpose(-2, -1)) |
|
|
|
if mask is not None: |
|
attn = attn.masked_fill(mask.unsqueeze(1) == 0, float('-inf')) |
|
|
|
attn = attn.softmax(dim=-1) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N_q, C) |
|
x = self.proj(x) |
|
return x |
|
|
|
def forward(self, |
|
hidden_states_q: torch.Tensor, |
|
hidden_states_kv: torch.Tensor, |
|
attention_mask: torch.Tensor = None) -> torch.Tensor: |
|
|
|
x = self._naive_attn(hidden_states_q, hidden_states_kv, attention_mask) |
|
return x |
|
|
|
|
|
class InternMLP(nn.Module): |
|
def __init__(self, embed_dim, act): |
|
super().__init__() |
|
self.act = ACT2FN[act] |
|
self.w1 = nn.Linear(embed_dim, 4 * embed_dim, bias=False) |
|
self.w3 = nn.Linear(embed_dim, 4 * embed_dim, bias=False) |
|
self.w2 = nn.Linear(4 * embed_dim, embed_dim, bias=False) |
|
self.norm = InternRMSNorm(embed_dim) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
hidden_states = self.norm(hidden_states) |
|
hidden_states = self.w2(self.act(self.w1(hidden_states)) * self.w3(hidden_states)) |
|
|
|
return hidden_states |
|
|
|
|
|
class InternEncoderLayer(nn.Module): |
|
def __init__(self, embed_dim): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.num_heads = 16 |
|
self.act = 'silu' |
|
self.drop_path_rate = 0.1 |
|
|
|
self.attn = InternAttention(self.embed_dim, self.num_heads) |
|
self.mlp = InternMLP(self.embed_dim, self.act) |
|
|
|
self.drop_path1 = DropPath(self.drop_path_rate) if self.drop_path_rate > 0. else nn.Identity() |
|
self.drop_path2 = DropPath(self.drop_path_rate) if self.drop_path_rate > 0. else nn.Identity() |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states_q: torch.Tensor, |
|
hidden_states_kv: torch.Tensor, |
|
attn_mask: torch.Tensor = None |
|
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
""" |
|
hidden_states = hidden_states_q + self.drop_path1(self.attn(hidden_states_q, hidden_states_kv, attn_mask)) |
|
hidden_states = hidden_states + self.drop_path2(self.mlp(hidden_states)) |
|
|
|
return hidden_states |
|
|
|
|
|
class VisionProjector(nn.Module): |
|
def __init__(self, vit_hidden_size, llm_hidden_size, downsample_ratio, ps_version, num_image_token): |
|
super().__init__() |
|
self.downsample_ratio = downsample_ratio |
|
self.ps_version = ps_version |
|
|
|
self.mlp1 = nn.Sequential( |
|
InternRMSNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), |
|
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size, bias=False), |
|
nn.SiLU() |
|
) |
|
|
|
self.mlp2 = nn.Sequential( |
|
InternRMSNorm(vit_hidden_size), |
|
nn.Linear(vit_hidden_size, llm_hidden_size, bias=False), |
|
nn.SiLU() |
|
) |
|
|
|
self.mlp3 = nn.Sequential( |
|
InternRMSNorm(vit_hidden_size), |
|
nn.Linear(vit_hidden_size, llm_hidden_size, bias=False), |
|
nn.SiLU() |
|
) |
|
|
|
self.cls_scale = nn.Parameter(torch.randn([1, int(num_image_token ** 0.5), int(num_image_token ** 0.5), llm_hidden_size])) |
|
|
|
self.attn_global = InternEncoderLayer(llm_hidden_size) |
|
self.attn_local = InternEncoderLayer(llm_hidden_size) |
|
|
|
|
|
def forward(self, vit_embeds): |
|
cls_embds = vit_embeds[:, 0, :] |
|
vit_embeds = vit_embeds[:, 1:, :] |
|
|
|
b = vit_embeds.shape[0] |
|
h = w = int(vit_embeds.shape[1] ** 0.5) |
|
vit_embeds = vit_embeds.reshape(b, h, w, -1) |
|
|
|
vit_embeds_q = pixel_shuffle(vit_embeds, self.downsample_ratio, self.ps_version) |
|
vit_embeds_q = self.mlp1(vit_embeds_q) |
|
vit_embeds_q = func_transform(vit_embeds_q, 1, 1) |
|
|
|
vit_embeds_cls = self.mlp2(cls_embds) |
|
vit_embeds_cls = vit_embeds_cls.reshape(b, 1, 1, -1).expand(-1, int(self.downsample_ratio * h), int(self.downsample_ratio * w), -1) |
|
cls_scale = self.cls_scale.expand(b, -1, -1, -1) |
|
vit_embeds_cls = vit_embeds_cls * cls_scale |
|
vit_embeds_cls = func_transform(vit_embeds_cls, 1, 1) |
|
|
|
vit_embeds_kv = self.mlp3(vit_embeds) |
|
vit_embeds_kv = func_transform(vit_embeds_kv, int(1 / self.downsample_ratio), int(1 / self.downsample_ratio)) |
|
|
|
vit_embeds_q = self.attn_local(vit_embeds_q, vit_embeds_kv) |
|
|
|
vit_embeds_cls = self.attn_global(vit_embeds_cls, vit_embeds_kv) |
|
|
|
vit_embeds = vit_embeds_q + vit_embeds_cls |
|
vit_embeds = vit_embeds.reshape(b, int(self.downsample_ratio * h), int(self.downsample_ratio * w), -1) |
|
|
|
return vit_embeds |
|
|
|
|
|
class InternVLChatModel(PreTrainedModel): |
|
config_class = InternVLChatConfig |
|
main_input_name = 'pixel_values' |
|
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer', |
|
'Phi3DecoderLayer', 'Qwen2DecoderLayer'] |
|
_supports_flash_attn_2 = True |
|
|
|
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None): |
|
super().__init__(config) |
|
|
|
assert version_cmp(transformers.__version__, '4.37.0', 'ge') |
|
image_size = config.force_image_size or config.vision_config.image_size |
|
patch_size = config.vision_config.patch_size |
|
self.patch_size = patch_size |
|
self.select_layer = config.select_layer |
|
self.template = config.template |
|
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) |
|
self.downsample_ratio = config.downsample_ratio |
|
self.ps_version = config.ps_version |
|
self.llm_arch_name = config.llm_config.architectures[0] |
|
|
|
logger.info(f'num_image_token: {self.num_image_token}') |
|
logger.info(f'ps_version: {self.ps_version}') |
|
if vision_model is not None: |
|
self.vision_model = vision_model |
|
else: |
|
self.vision_model = InternVisionModel(config.vision_config) |
|
if language_model is not None: |
|
self.language_model = language_model |
|
else: |
|
if config.llm_config.architectures[0] == 'LlamaForCausalLM': |
|
self.language_model = LlamaForCausalLM(config.llm_config) |
|
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM': |
|
self.language_model = InternLM2ForCausalLM(config.llm_config) |
|
elif config.llm_config.architectures[0] == 'Phi3ForCausalLM': |
|
self.language_model = Phi3ForCausalLM(config.llm_config) |
|
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM': |
|
self.language_model = Qwen2ForCausalLM(config.llm_config) |
|
else: |
|
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') |
|
|
|
vit_hidden_size = config.vision_config.hidden_size |
|
llm_hidden_size = config.llm_config.hidden_size |
|
|
|
self.projector = VisionProjector(vit_hidden_size, llm_hidden_size, self.downsample_ratio, self.ps_version, self.num_image_token) |
|
|
|
self.img_context_token_id = None |
|
self.conv_template = get_conv_template(self.template) |
|
if hasattr(config, 'system_message'): |
|
self.system_message = config.system_message |
|
else: |
|
self.system_message = self.conv_template.system_message |
|
self.num_samples = 0 |
|
|
|
if config.use_backbone_lora: |
|
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora) |
|
|
|
if config.use_llm_lora: |
|
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora) |
|
|
|
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): |
|
lora_config = LoraConfig( |
|
r=r, |
|
target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'], |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
) |
|
self.vision_model = get_peft_model(self.vision_model, lora_config) |
|
self.vision_model.print_trainable_parameters() |
|
|
|
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): |
|
|
|
if self.llm_arch_name == 'InternLM2ForCausalLM': |
|
target_modules = ['attention.wqkv', 'attention.wo', 'feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3'] |
|
elif self.llm_arch_name == 'Phi3ForCausalLM': |
|
target_modules = ['mlp.down_proj', 'mlp.gate_up_proj', 'self_attn.o_proj', 'self_attn.qkv_proj'] |
|
elif self.llm_arch_name in ['Qwen2ForCausalLM', 'LlamaForCausalLM']: |
|
target_modules = ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj', |
|
'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'] |
|
else: |
|
raise NotImplemented |
|
lora_config = LoraConfig( |
|
r=r, |
|
target_modules=target_modules, |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
task_type='CAUSAL_LM' |
|
) |
|
self.language_model = get_peft_model(self.language_model, lora_config) |
|
self.language_model.enable_input_require_grads() |
|
self.language_model.print_trainable_parameters() |
|
|
|
|
|
def extract_feature(self, pixel_values): |
|
if self.select_layer == -1: |
|
vit_embeds = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_hidden_states=False, |
|
return_dict=True).last_hidden_state |
|
else: |
|
vit_embeds = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_hidden_states=True, |
|
return_dict=True).hidden_states[self.select_layer] |
|
|
|
vit_embeds = self.projector(vit_embeds) |
|
|
|
return vit_embeds |
|
|
|
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None, |
|
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', |
|
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None): |
|
if history is not None or return_history: |
|
print('Now multi-turn chat is not supported in batch_chat.') |
|
raise NotImplementedError |
|
|
|
if image_counts is not None: |
|
num_patches_list = image_counts |
|
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.') |
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
self.img_context_token_id = img_context_token_id |
|
|
|
if verbose and pixel_values is not None: |
|
image_bs = pixel_values.shape[0] |
|
print(f'dynamic ViT batch size: {image_bs}') |
|
|
|
queries = [] |
|
for idx, num_patches in enumerate(num_patches_list): |
|
question = questions[idx] |
|
if pixel_values is not None and '<image>' not in question: |
|
question = '<image>\n' + question |
|
template = get_conv_template(self.template) |
|
template.system_message = self.system_message |
|
template.append_message(template.roles[0], question) |
|
template.append_message(template.roles[1], None) |
|
query = template.get_prompt() |
|
|
|
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN |
|
query = query.replace('<image>', image_tokens, 1) |
|
queries.append(query) |
|
|
|
tokenizer.padding_side = 'left' |
|
model_inputs = tokenizer(queries, return_tensors='pt', padding=True) |
|
input_ids = model_inputs['input_ids'].cuda() |
|
attention_mask = model_inputs['attention_mask'].cuda() |
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep) |
|
generation_config['eos_token_id'] = eos_token_id |
|
generation_output = self.generate( |
|
pixel_values=pixel_values, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
**generation_config |
|
) |
|
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True) |
|
responses = [response.split(template.sep)[0].strip() for response in responses] |
|
return responses |
|
|
|
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, |
|
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', |
|
verbose=False): |
|
|
|
if history is None and pixel_values is not None and '<image>' not in question: |
|
question = '<image>\n' + question |
|
|
|
if num_patches_list is None: |
|
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] |
|
assert pixel_values is None or len(pixel_values) == sum(num_patches_list) |
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
self.img_context_token_id = img_context_token_id |
|
|
|
template = get_conv_template(self.template) |
|
template.system_message = self.system_message |
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep) |
|
|
|
history = [] if history is None else history |
|
for (old_question, old_answer) in history: |
|
template.append_message(template.roles[0], old_question) |
|
template.append_message(template.roles[1], old_answer) |
|
template.append_message(template.roles[0], question) |
|
template.append_message(template.roles[1], None) |
|
query = template.get_prompt() |
|
|
|
if verbose and pixel_values is not None: |
|
image_bs = pixel_values.shape[0] |
|
print(f'dynamic ViT batch size: {image_bs}') |
|
|
|
for num_patches in num_patches_list: |
|
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN |
|
query = query.replace('<image>', image_tokens, 1) |
|
|
|
model_inputs = tokenizer(query, return_tensors='pt') |
|
input_ids = model_inputs['input_ids'].cuda() |
|
attention_mask = model_inputs['attention_mask'].cuda() |
|
generation_config['eos_token_id'] = eos_token_id |
|
generation_output = self.generate( |
|
pixel_values=pixel_values, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
**generation_config |
|
) |
|
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] |
|
response = response.split(template.sep)[0].strip() |
|
history.append((question, response)) |
|
if return_history: |
|
return response, history |
|
else: |
|
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') |
|
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>') |
|
if verbose: |
|
print(query_to_print, response) |
|
return response |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
input_ids: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
visual_features: Optional[torch.FloatTensor] = None, |
|
generation_config: Optional[GenerationConfig] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**generate_kwargs, |
|
) -> torch.LongTensor: |
|
|
|
assert self.img_context_token_id is not None |
|
if pixel_values is not None: |
|
if visual_features is not None: |
|
vit_embeds = visual_features |
|
else: |
|
vit_embeds = self.extract_feature(pixel_values) |
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
B, N, C = input_embeds.shape |
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
|
input_ids = input_ids.reshape(B * N) |
|
selected = (input_ids == self.img_context_token_id) |
|
assert selected.sum() != 0 |
|
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) |
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
else: |
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
|
outputs = self.language_model.generate( |
|
inputs_embeds=input_embeds, |
|
attention_mask=attention_mask, |
|
generation_config=generation_config, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
use_cache=True, |
|
**generate_kwargs, |
|
) |
|
|
|
return outputs |
|
|